


Edited by
Mikhail Zhitlukhin and Alexey Muravlev

Cover by
Alexey Muravlev

Steklov Mathematical Institute, Moscow, Russia



Preface

International Conference “Advanced Finance and Stochastics” was held on June
24–28, 2013 at Steklov Mathematical Institute in Moscow, Russia.

This book contains abstracts of the 51 papers presented at the Conference, which
cover areas such as stochastic control in finance, derivatives pricing and hedging,
portfolio selection, statistics of financial data, risk theory and others.

The Conference was organized by Steklov Mathematical Institute, Laboratory
for Structural Methods of Data Analysis in Predictive Modeling, Center for Struc-
tural Data Analysis and Optimization, and Institute for Information Transmission
Problems. Financial support was provided by the Government of the Russian Fed-
eration, grant ag.11.G34.31.0073.

We dedicate the hosting of this event to the tercentenary of Jacob Bernoulli’s
remarkable paper “Ars Conjectandi”, 1713.

The general co-chairmen
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Scientific Committee:
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Organizing Committee:
A. Shiryaev, V. Spokoiny, A. Kuleshov, N. Beyer, E. Burnaev, B. Kashin,
A. Muravlev, A. Sergeev, T. Tolozova, P. Yaskov, M. Zhitlukhin, S. Zhulenev
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10 Conference program

Wednesday, 26 June

9:30 – 10:20 M. Soner: Martingale optimal transport and robust hedging

10:30 – 11:20 B. Dupire: Functional Ito calculus and financial applications

11:30 – 12:20 D. Belomestny: Optimal stopping via multilevel Monte Carlo

12:30 – 14:00 Lunch



Conference program 11

Thursday, 27 June

9:30 – 10:20 W. T. Ziemba: Response to Paul A. Samuelson letters and papers
on the Kelly capital growth investment criterion

10:30 – 11:20 L. Vostrikova: Semimartingale models with additional informa-
tion and their application in mathematical finance

11:30 – 11:50 R. Ahlip: Pricing foreign currency options under jumps diffu-
sions and stochastic interest rates

11:50 – 12:10 Coffee break

12:10 – 12:40 Poster session

12:40 – 13:30 J. Hinz: Using convexity methods for optimal stochastic switching

13:30 – 15:00 Lunch

15:00 – 15:50 Yu. Kabanov: On essential supremum and essential maximum
with respect to random partial orders with applications to hedging
of contingent claims under transaction costs

16:00 – 16:20 A. Slastnikov: Optimization of credit policy of bank and the gov-
ernment guarantees in a model of investment in a risky project

16:20 – 16:40 Coffee break

16:40 – 17:30 P. Glasserman: Market-triggered changes in capital structure:
equilibrium price dynamics

17:40 – 18:00 S. Sidorov: GARCH Model with jumps augmented with news an-
alytics data

18:00 – 18:20 H. Amini: Systemic risk with central counterparty clearing



12 Conference program

Friday, 28 June

9:30 – 10:20 M. Markov: Dynamic analysis of hedge fund returns: detecting
leverage and fraud

10:30 – 11:20 E. Mordecki: Optimal stopping: representation theorems and new
examples

11:30 – 11:50 C. Cuchiero: Fourier transform methods for pathwise covariance
estimation in the presence of jumps

11:50 – 12:10 Coffee break

12:10 – 12:30 A. Ahmad: Option pricing via stochastic volatility models: im-
pact of correlation structure on option prices

12:30 – 12:50 A. Gushchin: On a connection between superhedging prices and
the dual problem in utility maximization

12:50 – 13:10 A. Muravlev: Sequential hypothesis testing for a drift of a frac-
tional Brownian motion

13:10 – 13:30 M. Zhitlukhin: Detection of trend changes in stock prices

13:30 – 15:00 Lunch

15:00 – 15:20 F. Guillame: A moment matching market implied calibration
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Optimal stopping via multilevel Monte Carlo

Denis Belomestny

Duisburg-Essen University, Germany

In this talk we present a general methodology towards solving high-deminsional
optimal stopping problems via Multilevel Monte Carlo. The multilevel versions of
the well known primal-dual, stochastic mesh and policy improvement algorithms
will be introduced. We conduct a thorough complexity analysis of the proposed
algorithms and illustrate their efficiency for several high-dimensional option pricing
problem in finance.

References

[1] Belomestny, D., Schoenmakers, J. and Dickmann F. (2013). Multilevel dual approach
for pricing American type derivatives, forthcoming in Finance and Stochastics.

[2] Belomestny, D., Ladkau, M. and Schoenmakers, J. (2013). Multilevel simulation based
policy iteration for optimal stopping – convergence and complexity. Preprint.

[3] Belomestny, D., Dickmann, F. and Nagapetyan, T. (2013). Pricing American options
via multi-level approximation methods. arXiv: 1303.1334.

[4] Giles, M. (2008). Multilevel Monte Carlo path simulation. Operations Research,
56(3):607-617.

Email: denis.belomestny@uni-due.de
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Developing long term yield curve models for low rate regimes

M. A. H. Dempster

University of Cambridge and Cambridge Systems Associates Limited, UK

After a brief discussion of alternative approaches to long term yield curve mod-
elling, this talk will first discuss typical applications of these models to structured
product pricing, investment and asset liability management. It will go on to evalu-
ate existing models and their drawbacks before developing and testing a nonlinear
3 factor model appropriate for today’s low rate environments which is based on a
posthumously published suggestion of Fisher Black. The talk will conclude with
a description of current research into computationally intensive calibration tech-
niques for this model and a more complex model requiring the EM algorithm which
involves iterative Kalman filtering and maximum likelihood parameter estimation.
Progress to date and remaining challenges will be described.

References

[1] Dempster et al. (2006). Managing guarantees. Journal of Portfolio Management 32.2
245-256.

[2] Medova et al. (2008). Individual asset-liability management. Quantitative Finance 8.9
547-560.

[3] Dempster & Medova (2011). Asset liability management for individual households.
British Actuarial Journal 16.2 405-464 (with discussion of the Sessional Meeting of the
Institute of Actuaries, London 22.2.10).

[4] Dempster & Medova (2011). Planning for retirement: Asset liability management for
individuals. In: Asset Liability Management Handbook, Mitra & Schwaiger, eds. Pal-
grave Macmillan 409-432.

[5] Dempster, Mitra & Pflug (2009). Quantitative Fund Management. Chapman & Hall /
CRC

[6] Dempster, Medova & Villaverde (2010). Long term interest rates and consol bond
valuation. Journal of Asset Management 11.2-3 113-135.

[7] Dempster & Carton de Wiart (2011). Wavelet optimized valuation of financial deriva-
tives. International Journal of Theoretical and Applied Finance 14.7 1113-1137.

[8] Bertocchi, Consigli & Dempster (2011). Stochastic Optimization Methods in Finance
and Energy. Springer.

[9] Evans, Dempster & Medova (2012). Developing a practical yield curve model: An
odyssey. To appear in New Developments in Macro-Finance Yield Curves, J Chadha,
A Durre, M Joyce & L Sarnio, eds., Cambridge University Press (2013). Available on
SSRN

Email: mahd2@cam.ac.uk
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Two price valuation in continuous time

Ernst Eberlein

University of Freiburg, Germany

Based on joint work with Dilip Madan, Martijn Pistorius, Wim Schoutens, Marc Yor.

In classical economic theory the law of one price prevails and market participants
trade freely in both directions at the same price. This approach is appropriate for
highly liquid markets such as e.g. stock exchanges. In the absence of perfect
liquidity the law of one price should be replaced by a two price valuation theory
where market participants continue to trade freely with the market but the terms of
trade now depend on the direction of the trade. Typical examples of markets with
poor liquidity are over the counter (OTC) markets or some markets for corporate
bonds.

We develop here a static as well as a continuous time theory for two price
economies. The two prices are termed bid and ask or lower and upper price but they
should not be confused with the vast literature where bid-ask spreads are related
to transaction costs or other frictions involved in modeling financial markets. The
two prices arise on account of an exposure to residual risk that results from the
absence of sufficient liquidity and cannot be eliminated. The prices are designed
to make this exposure acceptable. Acceptability as a strict mathematical term
is modeled by requiring positive expectations under a whole host M of test or
scenario probabilities Q as described for example in Artzner, Delbaen, Eber and
Heath (1999). As a consequence the bid or lower price of a cash flow which is
represented by a random variable X is given by the infimum of test valuations

b(X) = inf
Q∈M

EQ[X]

while the ask or upper price turns out to be the supremum of the same set of test
valuations

a(X) = sup
Q∈M

EQ[X].

The resulting pricing operators are nonlinear operators on the space of ran-
dom variables, with the lower price being concave and the upper price convex. In
particular the upper price of a portfolio of financial instruments (risks) is smaller
than the sum of the prices of the components of the portfolio while the lower price
is similarly higher. Under the appropriate assumptions the computation of these
nonlinear expectations can be operationalized. The lower price can be expressed
as an expectation which is computed after distorting the risk distribution function
by composing it with a concave distribution function Ψ on the unit interval. The
price is then represented in the form

b(X) =

∫ ∞
−∞

xdΨ(FX(x)).

Email: eberlein@stochastik.uni-freiburg.de
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A suitable family of distortions which can be calibrated to market price data is
given by the minmaxvar functions

Ψγ(x) = 1−
(

1− x
1

1+γ

)1+γ
(0 ≤ x ≤ 1, γ ≥ 0).

This static theory can be extended to a dynamically consistent nonlinear pricing
approach in continuous time. For the case where the driving process is a diffusion
process much progress in this direction has been made by the construction of G-
expectations by Peng (2007). We develop here a theory where the underlying
uncertainty is given by a pure jump Lévy process X = (Xt)t≥0 such as a hyperbolic,
a variance gamma or a CGMY process. In this case the process is completely
specified by a drift term α and a Lévy measure ν given via its density in the form
k(y)dy. The corresponding infinitesimal operator L of the process is

Lu(x) = α
∂u

∂x
(x) +

∫
R

(
u(x+ y)− u(x)− ∂u

∂x
(x)y

)
k(y)dy.

If we denote by u(x, t) the (risk-neutral) time zero financial value, when X(0) = x,
of a claim paying φ(Xt) at time t, this function is the solution of a partial integro-
differential equation (PIDE)

ut = L(u)− ru

subject to the boundary condition u(x, 0) = φ(x) where r denotes a constant
interest rate. This solution can also be expressed in the form

u(x, t) = E[e−rtφ(Xt) | X0 = x].

Using integrability properties of the Lévy density the infinite Lévy measure is first
transformed into a probability and then the integral term in the equation for the
operator L is distorted similar to the distortion of the expectation in the static
case. The bid price arises as the solution of the PIDE where the distorted operator
is used. One gets the ask price as the negative of the bid price of the negative cash
flow. To demonstrate that this general approach can be implemented we derive bid
and ask prices for portfolios of derivatives as well as for perpetuities and insurance
loss processes.

References

[1] Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math.
Finance 9(3) (1999) 203–228.

[2] Eberlein, E., Gehrig, T., Madan, D.: Pricing to acceptability: With applications to
valuing one’s own credit risk. The Journal of Risk 15(1) (2012) 91–120.

[3] Eberlein, E., Madan, D.: Unbounded liabilities, capital reserve requirements and the
taxpayer put option. Quantitative Finance 12 (2012) 709–724.

[4] Eberlein, E., Madan, D., Pistorius, M., Schoutens, W., Yor, M.: Two price economies
in continuous time. Preprint, University of Freiburg (2012).
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[5] Eberlein, E., Madan, D., Pistorius, M., Yor, M.: Bid and ask prices as non-linear
continuous time G-expectations based on distortions. Preprint, University of Freiburg
(2013).

[6] Peng, S.: G-expectation, G-Brownian motion and related stochastic calculus of Itô
type. In Benth, F. E., Di Nunno, G., Lindstrøm, T.; Øksendal, B., Zhang, T. (eds.):
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Springer, pp. 541–568, (2007).
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Market-triggered changes in capital structure:
equilibrium price dynamics

Paul Glasserman Behzad Nouri

Columbia University, USA

Contingent capital is debt issued by a bank that converts to equity when the
bank nears financial distress. This type of security has been proposed as a potential
solution to the problem of banks that are “too big too fail,” providing a private
sector alternative to costly government bail-outs.

The biggest challenge to implementation is the selection of the trigger for con-
version from debt to equity. Some have proposed triggers based on market prices,
such as a decline in the bank’s own stock price. However, using the market price of
a firm’s equity to trigger a change in the firm’s capital structure creates a question
of internal consistency because the value of the equity itself depends on the firm’s
capital structure.

We analyze the general problem of existence and uniqueness of equilibrium val-
ues for a firm’s liabilities in this context, meaning values consistent with a market-
price trigger. The liquidity of the triggering security, as measured by trading
frequency, has important implications for this problem. In a static or discrete-
time formulation of the problem, multiple solutions are possible. In contrast, we
show that the possibility of multiple equilibria can largely be ruled out in contin-
uous time. Continuous-time trading allows prices to fully adjust in anticipation of
reaching a trigger.

Put abstractly, the problem we consider is the following. Given two martingales
U and V on a time interval [0, T ], when does there exist a (unique) third martingale
S, such that S coincides with U the first time S crosses a specified barrier, and
ST = VT if S never crosses the barrier. We interpret U and V as the prices of
claims on post-conversion and no-conversion variants of a firm, and we seek an
equilibrium price process S in which conversion is triggered by a barrier crossing
by S itself. (This is analogous to pricing a “self-referential” barrier option in which
the barrier is applied to the price of the barrier option itself, rather than to the
underlying asset.) We impose conditions on U and V that lead to a unique solution
and interpret these conditions in terms of contract features.

Within our general framework, existence of an equilibrium is ensured through
appropriate positioning of the trigger level; in the case of contingent capital with
a stock price trigger, we need the trigger to be sufficiently high. More generally,
if the conversion is to be triggered by a decline in the market price of a claim,
then the key condition we need is that the no-conversion price be higher than the
post-conversion price when either is above the trigger. Put differently, we require
that the trigger be sufficiently high to ensure that this holds. For the design of
contingent capital with a stock price trigger, this condition may be interpreted
to mean that conversion should be disadvantageous to shareholders. Our results
apply as well to other types of changes in capital structure and triggers based on
debt values as well as equity values.

Email: pg20@columbia.edu
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Approximation of nondivergent type parabolic PDEs in finance

F. F. Gonçalves M. R. Grossinho

CEMAPRE, ISEG, Technical University of Lisbon, Portugal

Department of Mathematics, ISEG, Technical University of Lisbon, Portugal

We study the spatial discretisation of the Cauchy problem

∂u

∂t
= Lu+ f in [0, T ]× Rd, u(0, x) = g(x) in Rd, (1)

where L is the second-order partial differential operator in the nondivergence form

L(t, x) = aij(t, x)
∂2

∂xi∂xj
+ bi(t, x)

∂

∂xi
+ c(t, x), i, j = 1, . . . , d,

with real coefficients (written with the usual summation convention), f and g are
given real-valued functions, and T ∈ (0,∞) is a constant. We assume that operator
∂/∂t−L is uniformly parabolic, and allow the growth in the spatial variables of the
first and second-order coefficients in L (linear and quadratic growth, respectively),
and of the data f and g (polynomial growth).

Multidimensional PDE problems arise in Financial Mathematics and in Math-
ematical Physics. We are mainly motivated by the application to a large class of
stochastic models in Financial Mathematics comprising the non path-dependent
options, with fixed exercise, written on multiple assets (basket options, exchange
options, compound options, European options on future contracts and foreign-
exchange, and others), and also to a particular type of path-dependent options:
the Asian options (see, e.g., [14]).

Let us consider the stochastic modeling of a multi-asset financial option of Euro-
pean type under the framework of a general version of Black-Scholes model, where
the vector of asset appreciation rates and the volatility matrix are taken time and
space-dependent. Owing to a Feynman-Kač type formula, pricing this option can
be reduced to solving the Cauchy problem (with terminal condition) for a degen-
erate second-order linear parabolic PDE of nondivergent type, with null term and
unbounded coefficients (see, e.g., [14]). Therefore, alternatively to approximat-
ing the option price with probabilistic numerical methods, we can approximate
the solution of the corresponding PDE problem with the use of non-probabilistic
techniques.

When problem (1) is considered in connection with the Black-Scholes modeling
of a financial option, we have that the growth of the vector SDE coefficients in the
underlying financial model is appropriately matched. Also, by setting the problem
with this generality, we cover the general case where the asset appreciation rate
vector and the volatility matrix are taken time and space-dependent. Finally, by
imposing weak conditions on the initial data g, we allow the financial derivative
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pay-off to be specified in a large class of functions. The free term f is included to
further improve generality.

In the present study, we tackle the challenge posed to the spatial approxima-
tion1 by the unboundedness of the PDE coefficients, under the strong assumption
that the PDE does not degenerate. In order to facilitate the approach, we avoid
numerical method sophistication, and make use of basic one-step finite-difference
schemes.

The numerical methods and possible approximation results are strongly linked
to the theory on the solvability of the PDEs. We make use of the L2 theory of solv-
ability of linear PDEs in weighted Sobolev spaces. In particular, we consider the
PDE solvability in a class of weighted Sobolev spaces, the so-called well-weighted
Sobolev spaces, first introduced by O. G. Purtukhia2, and further generalised by
I. Gyöngy and N. V. Krylov (see [10]), for the treatment of linear SPDEs. By
constructing discrete versions of these spaces, we set a suitable discretised frame-
work, and investigate the PDE approximation in space with the use of standard
variational techniques.

We emphasize some points.

Firstly, we note that many PDE problems related to Finance are Cauchy prob-
lems: initial-boundary value problems arise mostly after a localization procedure
for the purpose of obtaining implementable numerical schemes. Therefore, we do
not find in many of these problems the complex domain geometries which are one
important reason to favour other numerical methods (e.g., finite-element methods).

Also, although the finite-difference method for approximating PDEs is a well
developed area, and the theory could be considered reasonably complete since three
decades ago3 4, some important research is still currently pursued (see, e.g., the
recent works [12, 13]).

Secondly, we observe that the usual procedure for obtaining implementable nu-
merical schemes for problem (1) is to localize it to a bounded domain in [0, T ]×Rd,
and then to approximate the localized problem (see, e.g., [1, 16, 18]); see also
[3, 17], where the approximation is pursued for more complex financial models but
using the same localization technique). In this case, there is no need to consider
weighted functional spaces for the solvability and approximation study, as the PDE
coefficients are bounded in the truncated domain.

An alternative procedure is to (semi) discretise problem (1) in [0, T ]×Zdh, with
Zdh the h-grid on Rd, and then localize the discretised problem to a bounded domain
in [0, T ] × Zdh, by imposing a discrete artificial boundary condition (see, e.g., [4,

1 For the time discretisation, we refer to [8] where it is investigated the approximation of a
general linear evolution equation problem which the PDE problem (1) can be cast into.

2 The references for Purtukhia’s works can be found in [10].
3 We refer to [19] for a brief summary of the method’s history, and also for the references of

the seminal works by R. Courant, K. O. Friedrichs and H. Lewy, and further major contributions
by many others.

4 For the application of the finite-difference method to financial option pricing, we refer to the
review paper [2] for the references of the original publications by M. Brennan and E. S. Schwartz,
and further major research.
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5, 6, 20], where several types of initial-value problems on unbounded domains are
approximated; we refer to [5, 6, 20] for the procedure discussion). Our study is
meaningful in this latter case, as the coefficient unboundedness remains a problem
which must be dealt with.

Finally, we remark that: (i) the partial differential operators arising in Finance
are of nondivergent type, and (ii) we do not assume the operator coefficients to be
smooth enough to obtain an equivalent divergent operator. Therefore, although
there are definitive advantages to considering the operator in the divergent form
for the variational approach, this is not available for the present work.

With our study, we aim to contribute to the study of the numerical approxi-
mation of the general second-order parabolic problem (1), in the challenging case
where the coefficients are unbounded (as well as the free data f and g). The results
are obtained under weak regularity assumptions on the data. Also, an estimate for
the rate of convergence of the discretised problem’s generalised solution to the the
exact problem’s generalised solution is provided.

We outline the study. Firstly, we establish some well-known facts on the solv-
ability of linear PDEs under a general framework, and introduce the well-weighted
Sobolev spaces. Then, we discretise in space problem (1), with the use of finite-
difference schemes. We set a discrete framework and, by showing that it is a par-
ticular case of the general framework previously presented, we deduce an existence
and uniqueness result for the discretised problem’s generalised solution. Finally,
we investigate the approximation properties of the discrete scheme, and compute
a rate of convergence.

Acknowledgements. The authors are grateful to Fundação para a Ciência e
Tecnologia (SFRH/BPD/35734/2008 to F.F.G, FEDER/POCI 2010 to M.R.G)
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[11] Gyöngy, I., and N. V. Krylov, 2005: An accelerated splitting-up method for parabolic
equations. SIAM J. Math. Anal., 37, 1070–1097.
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Using convexity methods for optimal stochastic switching

Juri Hinz

University of Technology Sydney, Australia

Diverse problems in the area financial engineering can be frequently addressed as
discrete-time stochastic control problems. For their solution, a variety of computa-
tional methods has been developed. However, the complexity of typical real-world
applications usually goes beyond what is computationally feasible. In this talk,
we address a novel method of approximate calculation of optimal control policy
applicable to a particular class of control problems, whose stochastic dynamics
exhibit a certain convexity preserving property. Utilizing this specific structure,
we suggest a numerical algorithm which enjoys a number of desirable properties.
Besides a very strong convergence properties, the main advantage of our approach
is on the practical side, since we obtain an easy implementable scheme, based on
simple matrix manipulations. We illustrate our method by applications in the
portfolio optimization and to the investment decision optimization under partial
information. Finally, we show how the estimate of the ’distance to optimality’ of
an approximative solution using Monte-Carlo based duality methods.
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On essential supremum and essential maximum
with respect to random partial orders with applications
to hedging of contingent claims under transaction costs

Yu. Kabanov1,2 E. Lépinette3

1 Université de Franche-Comté, Laboratoire de Mathématiques, Besançon, France
2 National Research University - Higher School of Economics,

Laboratory of Quantitative Finance, Moscow, Russia
3 Université Paris-Dauphine, Cérémade, France

In the theory of markets with proportional transaction costs a rather general
model can be defined by an adapted (polyhedral) cone-valued process K̂ = (K̂t)
representing the solvency regions. The value processes are d-dimensional adapted
processes and contingent claims are d-dimensional random variables or processes,
see the book [1] where the ”hat” notations are used to express assets in physical
units as opposed to the ”countability” in monetary terms, i.e. of units of the
numéraire. Hedging a European-type contingent claim Ĉ ∈ L(Rd,FT ) means to
find a self-financing portfolio with the value process V̂ = (V̂t) whose terminal value
dominates the claim in the sense that the difference V̂T − Ĉ belongs to the random
solvency cone K̂T . Hedging an American-type contingent claim given by a pay-off
process Ŷ is defined in an analogous way.

A practically important questions are: how to compute the hedging set of ini-
tial capitals admitting self-financing strategies super-replicating a given contingent
claims and how to find such hedging strategies? A rather natural idea is to look
for answers to these questions by studying the sets of ”minimal” portfolios domi-
nating the pay-offs. In the vector setting the concepts of minimality/maximality
are not obvious and several analogs are suggested in the framework of vector and
set-valued optimization usually in a deterministic framework. Placing the problem
in a very general and abstract setting of a random partial order (or, more gener-
ally, a preference relation) we investigate seemingly new concepts of Essssup and
Essmax and show that they are useful to define recursive relations for minimal
hedging portfolios.
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Prior-to-default equivalent supermartingale measures

Constantinos Kardaras

London School of Economics and Political Science, United Kingdom

1. Probabilistic set-up

Let E be a Polish space, modelling all possible states in an economy. Append
a point 4 to E, which will model a “cemetery” state. If ω : [0,∞) 7→ E ∪ {4}
is right-continuous, define ζ(ω) := inf{t ∈ R+ | ω(t) = ζ}, with the interpretation
of the economy’s lifetime (or default). Define Ω as the set of all right-continuous
ω : [0,∞) 7→ E ∪{4} such that ω(0) ∈ E and ω(t) = 4 holds for all t ∈ [ζ(ω),∞),
and let F = (Ft)t∈R+ be the right-continuous augmentation of the smallest filtration
that makes the coordinate process on Ω adapted. Finally, set F :=

∨
t∈R+

Ft.
Two probabilities P and Q on (Ω,F) will be called equivalent prior to ζ if for

any stopping time T and AT ∈ FT , Q[AT ∩ {T < ζ}] = 0 holds if and only if
P[AT ∩ {T < ζ}] = 0; denote such relationship via Q ∼<ζ P. Furthermore, agree
to call ζ foretellable under Q if there exists a nondecreasing sequence (τn)n∈N of
stopping times such that Q[τn < ζ, ∀n ∈ N] = 1 and Q[limn→∞ τn = ζ] = 1. The
next result, mathematically interesting in its own right, is of major importance
(albeit, in a tacit way) in the development of the financial model later.

Theorem. For any probability measure P on (Ω,F), there exists Q ∼<ζ P such
that ζ is foretellable under Q.

2. Financial set-up

The class of wealth processes available to an investor with (normalized) unit
initial capital will be defined in a rather abstract and general-encompassing way.
It contains as a special case any reasonable class of (potentially, constrained) non-
negative wealth processes resulting from frictionless trading that has appeared in
the literature, including the possibility of an infinite number of assets (such as bond
markets or equity markets with traded options), and allowing for overall default of
the economy. A set X of stochastic processes will be called a wealth-process set if:

• Each X ∈ X is a nonnegative, adapted, right-continuous process with X0 = 1,
and Xt = 0 holds for all t ≥ ζ.

• 1[ζ,∞[ ∈ X .

• X is fork-convex: for any s ∈ R+, X ∈ X , any strictly positive X ′ ∈ X and
X ′′ ∈ X , and any [0, 1]-valued Fs-measurable random variable αs, the process

R+ 3 t 7→


Xt, if 0 ≤ t < ζ ∧ s,
αs(Xs/X

′
s)X

′
t + (1− αs)(Xs/X

′′
s )X ′′t , if ζ ∧ s ≤ t < ζ,

0, if ζ ≤ t,
(FC)
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is also an element of X .

Fork-convexity corresponds to re-balancing: (FC) exactly describes the wealth gen-
erated when a financial agent invests according toX up to time s, and then reinvests
a fraction α of the money in the wealth process described by X ′ and the remaining
fraction (1− α) in the wealth process described by X ′′.

3. Fundamental Theorem of Asset Pricing (FTAP) and superhedging

For a stopping time T and nonnegative optional process V , define

p(V, T ) := inf{x > 0 | ∀ε > 0, ∃Xx,ε ∈ xX with P[Xx,ε
T < VT , T < ζ] < ε}.

Loosely speaking, p(V, T ) is the minimal capital required at time zero in order
to superhedge VT at time T with as high a probability as desired, provided that
default has not occurred by time T .

An arbitrage of the first kind in the market is a pair of T ∈ R+ and nonnegative
optional process V such that p(V, T ) = 0 and P[VT > 0, T < ζ] > 0 hold. Say that
condition NA1 holds if there are no opportunities for arbitrage of the first kind.

Denote by Q the collection of all Q ∼<ζ P such that all processes X ∈ X are
(nonnegative) supermartingales.

FTAP. In the previous set-up, condition NA1 is equivalent to Q 6= ∅. Under any of
the previous two (equivalent) conditions, for any stopping time T and nonnegative
optional process V , the following superhedging duality holds:

p(V, T ) = sup
Q∈Q

EQ[VT ; T < ζ].

4. Market completeness

For this last part, a precise mathematical statement will not be given, since it
would require quite involved definitions and notation; however, we shall discuss
below the main ideas in a somewhat precise manner.

In the setting of Section 2, assume further that X is closed in the semimartingale
topology, locally in time for probabilities Q ∼<ζ P under which ζ is foretellable.
Then, under condition NA1, one can obtain a variant of the second Fundamen-
tal Theorem of Asset Pricing, which provides an equivalence between the notion
of market completeness (basically, the ability to perfectly replicate bounded non-
negative positions using maximal wealth processes) with uniqueness of a maximal
probability Q ∈ Q. The latter qualification of maximality for Q ∈ Q means that
whenever Q ∈ Q is such that Q[AT ∩ {T < ζ}] ≤ Q[AT ∩ {T < ζ}] holds for any
stopping time T and AT ∈ FT , then Q = Q.



Plenary talks 29

Investment and capital structure decisions
under time-inconsistent preferences

Masaaki Kijima1 Yuan Tian2

1Tokyo Metropolitan University, Japan
2Ryukoku University, Kyoto, Japan

Based on a continuous-time model of quasi-hyperbolic discounting, this paper
provides an analytically tractable framework of entrepreneurial firms’ investment
and capital structure decisions with time-inconsistent preferences. We show that
the impact of time-inconsistent preferences on investment depends not only on the
financing structures (all-equity financing or debt financing), but also on the en-
trepreneurs’ belief regarding their future time-inconsistent behavior (sophisticated
or naive). Time-inconsistent preferences delay investment under both all-equity fi-
nancing and debt financing. However, the impact is weakened with debt financing,
because debt financing increases the payoff value upon investment and accelerates
investment. Naive entrepreneurs invest later and default earlier than sophisticated
entrepreneurs, leading to a shorter operating period. Moreover, we find that naive
entrepreneurs may choose higher leverage, while sophisticated entrepreneurs always
choose lower leverage, compared to the time-consistent benchmark. These results
support the empirical findings in entrepreneurial finance.
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Existence of endogenously complete equilibrium
driven by diffusion

Dmitry Kramkov

Carnegie Mellon Univeristy, USA

The existence of complete Radner equilibria is established in an economy which
parameters are driven by a diffusion process. Our results complement those in the
literature. In particular, we work under essentially minimal regularity conditions
and treat time-inhomogeneous case.
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Dynamic analysis of hedge fund returns:
detecting leverage and fraud

Michael Markov

Markov Processes International LLC, USA

The subject of this talk is the application of dynamic analysis of financial time
series data in detecting of fraud and other suspicious and de-stabilizing activity
of financial institutions. Mr. Markov will present a powerful technique Dynamic
Style Analysis (DSA) that helps to detect hidden risks, leverage and even alert to
possible fraud using only financial performance data.

Hedge fund industry has grown rapidly over the past decade to over $2 trillion
in assets and over 8,000 funds. At the same time, despite significant efforts to
regulate the industry, the amount of information available to hedge fund investors
remains negligible as compared to traditional investment products such as mutual
funds. In most cases, the only available information on a hedge fund is a time series
of monthly performance numbers and a vague description of the strategy. Hedge
funds represent significant systemic risk: they amassed significant amounts of assets
and through use of leverage and derivatives could destabilize world markets. In
addition, some hedge funds manipulate their performance data and unsuspected
investors become victims of outright fraud.

Practical aspects of the methodology will be discussed, e.g., parameter calibra-
tion, model selection, structural shift detection, etc.

The focus of the talk will be on case studies including:

- cases of fraud: a recent one (2012) in Japan where AIJ Investment Advisors
defrauded pension funds of billions of dollars in a sophisticated derivatives
strategy;

- detecting insider trading (Galleon hedge fund, 2009);

- massive arbitrage and rapid trading: Soros famous breaking of Bank of Eng-
land (1992) and 2010 Flash Crash;

- extreme leverage: Long Term Capital (LCTM, 1998) where Federal Reserve
had to orchestrate a bailout of the hedge fund to avoid disruption of world
markets.
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Optimal stopping: a new approach with examples

Ernesto Mordecki

Centro de Matemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

When considering optimal stopping problems we typically find two classes of
results. The first one consists in the explicit solution to a concrete optimal stopping
problem

Vα(x) = sup
τ

= Exe
−ατg(Xτ ) = Exe

−ατ∗g(Xτ∗). (1)

Usually in this case one has to –somehow– guess the solution and prove that this
guess in fact solves the optimization problem; we call this approach “verification”.
For example we can consider the papers [7], [8], [11], [10]. The second class consists
of general results, for wide classes of processes and reward functions. We call this
the “theoretical” approach. It typically include results about properties of the
solution. In this class we mention for example [2], [4], [1]. But these two classes not
always meet, as frequently in concrete problems the assumptions of the theoretical
studies are not fulfilled, and, what is more important, many of these theoretical
studies do not provide concrete ways to find solutions. In what concerns the first
approach, a usual procedure is to apply the principle of smooth fit, that generally
leads to the solution of two equations: the continuous fit equation and the smooth
fit equation. Once these equations are solved, a verification procedure is needed
in order to prove that the candidate is the effective solution of the problem (see
chapter IV in [9]). This approach, when an explicit solution can be found, is very
effective. In what concerns the second approach, maybe the most important result
is Dynkin’s characterization of the solution of the value function Vα as the least
α-excessive (or α-superharmonic) majorant of the payoff function g [2]. Other ways
of classifying approaches in order to study optimal stopping problems include the
martingale-Markovian dichotomy as exposed in [9].

Our departing point, inscribed in the Markovian approach, is Dynkin’s charac-
terization of the optimal stopping problem solution. Dynkin’s characterization [2]
states that, if the reward function is lower semi-continuous, V is the value function
of the non-discounted optimal stopping problem with reward g if and only if V is
the least excessive function such that V (x) ≥ g(x) for all x ∈ I. Applying this
result for the killed process Y , and taking into account the relation between X
and Y , we obtain that Vα, the value function of the problem with discount α, is
characterized as the least α-excessive majorant of g.

The second step uses Riesz’s decomposition of an α-excessive function. We
recall this decomposition in our context (see [5, 6, 3]). A function u : I → R
is α-excessive if and only if there exist a non-negative Radon measure µ and an
α-harmonic function such that

u(x) =

∫
(`,r)

Gα(x, y)µ(dy) + (α-harmonic function). (2)
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Furthermore, the previous representation is unique. The measure µ is called the
representing measure of u.

The third step is based on the fact that the resolvent and the infinitesimal
generator of a Markov process are inverse operators. Suppose that we can write

Vα(x) =

∫
I
Gα(x, y)(α− L)Vα(y)m(dy), (3)

where L is the infinitesimal generator and m(dy) is the speed measure of the dif-
fusion. Assuming that the stopping region has the form I ∩ {x ≥ x∗}, and taking
into account that Vα is α-harmonic in the continuation region and Vα = g in the
stopping region we obtain as a suitable candidate to be the representing measure

µ(dy) =


0, if y < x∗,

kδx∗(dy), if y = x∗,

(α− L)g(y)m(dy), if y > x∗,

(4)

Based on these considerations, we present some theoretical results and some new
examples.

An important byproduct of our approach has to do with the smooth fit principle.
Our results are independent of this principle, but they give sufficient conditions in
order to guarantee it. Our approach is also applicable to certain classes of processes
with jumps.

All the presented results are joint work with Fabián Crocce.
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34 Plenary talks

[10] Shepp, L. A. and Shiryaev, A. N., The Russian option: reduced regret, Ann. Appl.
Probab., The Annals of Applied Probability, 3, 1993, 3, 631–640.

[11] Taylor, Howard M., Optimal stopping in a Markov process, Ann. Math. Statist.,
Annals of Mathematical Statistics, 39, 1968, 1333–1344.



Plenary talks 35

Lower and upper bounds for Asian-type options:
a unified approach

Alexander Novikov1 Nino Kordzakhia 1,2

1University of Technology, Sydney, Australia
2 Macquarie University, Sydney, Australia

In the context of dealing with financial risk management problems it is desirable
to have accurate bounds for option prices in situations when pricing formulae do
not exist in the closed form. A unified approach for obtaining upper and lower
bounds for Asian-type options is proposed in this talk. The bounds obtained are
applicable to the continuous and discrete-time frameworks for the case of time-
dependent interest rates. Numerical examples will be provided to illustrate the
accuracy of the bounds.

Email: alex.novikov@uts.edu.au. Research supported by ARC Discovery grant DP120102398



36 Plenary talks

A new stochastic Fubini theorem for measure-valued processes

Tahir Choulli1 Martin Schweizer2

1University of Alberta, Edmonton, Canada
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We prove a new stochastic Fubini theorem in a setting where we integrate
measure-valued stochastic processes with respect to a d-dimensional martingale.
To that end, we develop a notion of measure-valued stochastic integrals. As an ap-
plication, we show how one can handle a class of quite general stochastic Volterra
semimartingales.
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Robust hedging, price intervals and optimal transport

H. Mete Soner1 Yan Dolinsky1,2

1ETH Zurich and Swiss Finance Institute, Switzerland
2Hebrew University, Israel

The original transport problem is to optimally move a pile of soil to an excava-
tion. Mathematically, given two measures of equal mass, we look for an optimal
map that takes one measure to the other one and also minimizes a given cost func-
tional. Kantorovich relaxed this problem by considering a measure whose marginals
agree with given two measures instead of a bijection. This generalization linearizes
the problem. Hence, allows for an easy existence result and enables one to identify
its convex dual.

In robust hedging problems, we are also given two measures. Namely, the ini-
tial and the final distributions of a stock process. We then construct an optimal
connection. In general, however, the cost functional depends on the whole path of
this connection and not simply on the final value. Hence, one needs to consider
processes instead of simply the maps S. The probability distribution of this process
has prescribed marginals at final and initial times. Thus, it is in direct analogy
with the Kantorovich measure. But, financial considerations restrict the process
to be a martingale Interestingly, the dual also has a financial interpretation as a
robust hedging (super-replication) problem.

In this talk, we prove an analogue of Kantorovich duality: the minimal super-
replication cost in the robust setting is given as the supremum of the expectations
of the contingent claim over all martingale measures with a given marginal at the
maturity. The related papers are [1, 2].

Acknowledgements. Research partly supported by the European Research Coun-
cil under the grant 228053-FiRM, by the ETH Foundation and by the Swiss Finance
Institute.
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The pricing model of corporate securities
under cross-holdings of equities and debts

Katsumasa Nishide1 Teruyoshi Suzuki2

1Yokohama National University, Japan
2Hokkaido Universitry, Japan

1. Model Setup

Our model is an extension of [1], [3], [2] and other related papers by introducing
default costs.

Suppose that there are totally n firms that cross-hold their equities and debts
and that the debts have a seniority structure with at most m priorities. Let bki
be the face value of k-th subordinated debt issued by firm i, k = 1, . . . ,m and
bk = (bk1, . . . , b

k
m)>. That is, bmi is paid with first priority at maturity, bm−1

i with
second, etc.

The cross-holding structure of k-th debts is described by the n × n matrix
Mk = (Mk

ij)
n
i,j=1. More concretely, firm i owns a proportion Mk

ij ∈ [0, 1] of the

k-th debt issued by firm j (Mii = 0). If Mk is a substochastic matrix, it means
that a part of k-th debts is owned by outside investors. The equities are also
cross-held with the structure M0 = (M0

ij)
n
i,j=1.

Let ei be the business asset of firm i and e = (e1 . . . , en)>. The total asset
(payment resource for debts) of firm i, denoted by ai, is written as

ai = ei +

m∑
`=0

n∑
j=1

M `
ijr

`
j , (1)

where rki is the payoff of firm i’s k-th debt at maturity for k = 1, . . . ,m and r0
i is

the payoff of firm i’s equity (rk = (rk1 , . . . , r
k
n)>).

A key assumption in this study is that a default at maturity accompanies some
liquidation costs. More concretely, if firm i cannot fully pay back all the debts at
maturity, the payment resource of firm i is reduced by the proportion δi ∈ [0, 1].
We write ∆ = diag(δi)

n
i=1.

Define

dki =
m∑

`=k+1

b`i (2)

and dk = (dk1, . . . , d
k
n)>. The clearing payment vector r ∈ R(m+1)n is naturally

defined by the following equations:

r0
i =

(
ai − d0

i

)
+

(3)
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Plenary talks 39

and

rki = 1{ai≥d0i }
bk1 + 1{ai(r)<d0i }

(
bki ∧

(
(1− δi)ai − dki

))
+

(4)

for k = 1, . . . ,m and i = 1, . . . , n.

2. Existence of Clearing Vectors

To study the clearing payment vector, let us define the function f : R(m+1)n →
R(m+1)n by

f0(r) =
(
a(r)− d0

)
+
, (5)

fk(r) =(I−D(r))bk + D(r)
(
bk ∧

(
(I−∆)a(r)− dk

))
+

(6)

for k = 1, . . . ,m, where

a(r) =e +

m∑
`=0

M`r`, (7)

D(r) =

1{a1(r)<d01} O
. . .

O 1{an(r)<d0n}

 . (8)

The clearing payment vector is expressed as a fixed point f(r) = r.

Proposition 1. Assume that M0 is substochastic. Then, there exists a vector

r ∈ R
(m+1)n
+ such that f(r) = r.

Proof. Let the vector r0
0 ∈ Rn

+ be given by

r0
0 = (I−M0)−1

(
e +

m∑
`=1

M`b` − d0

)
+

(9)

and define the sequence of the (m+ 1)n-dimensional vector {rh}by

r0 = (r0
0,b

1, . . . ,bm)> (10)

and rh = f(rh−1) for h ≥ 1. We can verify that {rh} is a monotonically non-
increasing sequence and bounded below. The limit r is what we want to obtain.

Alternatively, we can prove the existence of a clearing vector with the sequence
{rh} defined by r0 = 0 and rh = f(rh−1). The proof is completed by noticing that
{rh} is a non-decreasing sequence and bounded above, indicating the existence of
a limit r. We can also show that r 6= r in general.
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Proposition 2. The clearing payment vector r is the greatest clearing vector in
the sense that

r ≤ r (11)

for any r ∈ R
(m+1)n
+ with f(r) = r. Similarly the clearing payment vector r is the

least clearing vector in the sense that

r ≥ r (12)

for any clearing vector r ∈ R
(m+1)n
+ .

Intuitively, the computational iteration {rh} echoes the fictitious default algo-
rithm proposed by [1]. To see that, let the sequence of matrices {Dh} be given
by

D0 = O, Dh = D(rh). (13)

We use D0 in the calculation of the vector r1. In other words, we calculate the
initial payment vector as if no firm defaults. After having r1, we should calculate
D1 = D(r1) and check whether D1 = D0 or not. If the equality holds, r1 is actually
the greatest clearing vector and the default matrix is given by D0 = D1 = O.
Otherwise, we need to recalculate the payment vector r2 with default matrix D1.
The iteration ends when Dh = Dh−1, determining which firms actually default.
The greatest clearing vector is equal to rh. A similar discussion can be applied to
the derivation of r. That is, we set

D0 = I, Dh = D(rh). (14)

and calculate the sequence {rh}. The survival firms are determined by the matrix
D(r). We call the process of {Dh} the fictitious survival algorithm.

3. Numerical Results

If any.
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Semimartingale models with additional information
and their applications in mathematical finance

Lioudmila Vostrikova

LAREMA, Département de Mathématiques, Université d’Angers, France

Semi-martingale models are widely used for pricing and hedging of financial as-
sets. Namely, the price of risky asset can be represented by Dolan-Dade exponential
S = (St)t≥0 of some semi-martingale X:

St = S0 E(X)t.

In many cases the answer on the questions ”what is the price” of the option related
with S, and ”what is the optimal strategy”, depend on the information which an
investor can have. Initiated by Baudoin (2003), and investigated in a number of
papers ( see, for example, Gasbarra, Valkeila, Vostrikova (2004), Hillairet, Jiao
(2010,2011)) these questions begin to be very important in Mathematical Finance.
According to the quantity of information of investors, we will distinguish three
type of them, namely, non-informed, partially informed and perfectly informed
agents. Since a semi-martingale is always given on filtered probability space, we
will model the information of an investor by enlargement of the filtration. Namely,
we suppose that this information is given by an additional random variable or
a random process ξ = (ξt)t≥0. Then, non-informed agents will work on initial
probability space equipped with natural filtration F = (Ft)t≥0 of the process X
where

Ft =
⋂
s>t

σ(Xu, u ≤ s).

The partially informed agents will work on enlarged probability space with pro-
gressively enlarged filtration F̃ = (F̃t)t≥0 where

F̃t =
⋂
s>t

σ(Xu, u ≤ s)⊗ σ(ξu, u ≤ s).

And, finally, the perfectly informed agents will use again enlarged probability space
with initially enlarged filtration G = (Gt)t≥0 where

Gt =
⋂
s>t

σ(Xu, u ≤ s)⊗ σ(ξu, u ≤ T )

and T is time horizon. It should be pointed out that the enlargement of the
filtration leads to incomplete markets even in the case when initial market was
complete.

We give now a several examples of the situation presented above. The first one
concerns default models. The modelling of defaultable world suppose to introduce
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a default time ξ, which can be simply a random time, related with some econom-
ical reasons such as structural changes, increasing of the price of raw material, or
political changes, as change of the regime (see for instance, Eliott, Jeanblanc, Yor
(2001), El Karoui, Jeanblanc, Jiao (2009)).

The next example concerns so called change-point models, i.e. the models with
different behaviour before and after some random time. It should be noticed that
change-point problems have a long history, probably beginning with the papers
of Page (1955) in an a-posteriori setting, and of Shiryaev (1963) in a quickest
detection setting. The problem was later considered in many papers and books,
and was often related to a quickest detection approach. We underline, that not
only quickest detection approach is interesting in financial mathematics, and this
fact is related, for instance, with the investigation of the models with changing of
the regime (see Cawston, Vostrikova (2011)) , in particular with the models with
random dividends ( see Gapeev, jeanblanc (2010)).

We will concentrate ourselves on the third example, which concerns the indiffer-
ence pricing. Namely, in the real financial market investors can held traded risky
assets of maturity time T and receive some particular derivatives such as contingent
claims offering some pay-off at maturity time T ′ > T > 0. It can happen that the
assets related with contingent claims can not be traded since the trading is difficult
or impossible for investor because of lack of liquidity or legal restrictions. In this
situation the investor would like maximize expected utility of total wealth and at
the same time reduce the risk due to the uncertainty of pay-off of the contingent
claim. In such situations the utility indifference pricing become to be a main tool
for option pricing.

To be more precise, let us suppose that our market consists on non-risky asset
Bt = B0 exp(rt), where r is interest rate, and two risky assets

St = S0 E(X)t, S̃t = S̃0 E(X̃)t

where X and X̃ are semi-martingales with jumps ∆X > −1, ∆X̃ > −1, and E
is Dolean-Dade exponential. The investor can trade S and at the same time he
has a European type claim on S̃ given by g(S̃T ′) where g is some real-valued Borel
function. Let us denote by Π the set of self-financing predictable strategies. Then,
for utility function U and initial capital x, the optimal expected utility related with
S will be

VT (x) = sup
φ∈Π

E

[
U

(
x+

∫ T

0
φs dSs

)]
and if we add an option, then the optimal utility will be equal to

VT (x, g) = sup
φ∈Π

E

[
U

(
x+

∫ T

0
φs dSs + g(S̃T ′)

)]
As known, the indifference price pbT for buyer of the option g(S̃T ′) is a solution to
the equation

VT (x− pbT , g) = VT (x)
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and it is an amount of money which the investor would be willing to pay today for
the right to receive the claim and such that he is no worse off in expected utility
terms then he would have been without the claim. The indifference price for the
seller psT of the option is a solution to the equation

VT (x+ pbT ,−g) = VT (x)

and it is an amount of money which the seller of the option would be willing to
receive in counterpart of the option in order to preserve his own optimal utility.
The optimal utility of assets containing the options highly depends on the level
of information of the investor about S̃. More precisely, the investor can be non-
informed, partially informed or perfectly informed agent and the level of informa-
tion changes the class Π mentioned in previous formulas. Namely, a non-informed
agent can maximize his expected utility taking the strategies only from the set of
self-financing predictable strategies with respect to the natural filtration F of X.
At the same time, a partially informed agent can built his optimal strategy using
the set of self-financing predictable strategies with respect to the progressively en-
larged filtration F̃ with the process X̃. Finally, a perfectly informed agent can use
the self-financing predictable strategies with respect to initially enlarged filtration
G with S̃T ′ .

The first part of our talk is devoted to the general results about the maximisation
of utility for semi-martingale models depending on a random factor. As previously
let us introduce the total utility with the option g(ξ):

V (x, g) = sup
ϕ∈Π(G)

EP

[
U

(
x+

∫ T

0
ϕsdSs(ξ) + g(ξ)

)]
Here Π(G) is the set of all self-financing and admissible trading strategies related
with the initially enlarged filtration G = (Gt)t∈[0,T ], where Gt =

⋂
s>t (Fs ⊗ σ(ξ)).

To solve the utility maximisation problem in the initially enlarged filtration we
make an assumption about the absolute continuity of the conditional laws αt =
P(ξ | Ft) of the random variable ξ given Ft with respect to α, namely

αt << α

for t ∈]0, T ]. Then we define the conditional laws (P u)u∈Ξ of our semi-martingale
S(ξ) given {ξ = u} and we reduce the initial utility maximisation problem to the
conditional utility maximisation problem on the asset prices filtration F. More
precisely, to solve the utility maximisation problem on the enlarged filtration it is
enough to solve the conditional utility maximisation problem on the asset prices
filtration F

V u(x, g) = sup
ϕ∈Πu(F)

EPu

[
U

(
x+

∫ T

0
ϕs(u)dSs(u) + g(u)

)]
and then integrate the solution with respect to α. It should be noticed that the
investigation of semi-martingales depending of a random parameter leads, in gen-
eral, to deep measurability problems as it was pointed out in Stricker, Yor (1978).
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Finally, to solve conditional utility maximisation problem we use dual approach.
Let us denote by f a convex conjugate of U . Under the assumption about the
existence of an equivalent f -divergence minimal measure for the conditional semi-
martingale model, we give the expression for conditional maximal utility. Then we
give the final result for general utility maximisation problem.

As a next step, we do our study for HARA utilities. We introduce correspond-
ing information quantities as entropies and Hellinger distances, and we give the
expression for the maximal expected utility in terms of these quantities. Finally,
we introduce the information processes, like Kullback-Leibler and Hellinger pro-
cesses, and we give the expression of the maximal expected utility involving these
information processes.

Using previous results, we give the explicite formulas for indifference price of
buyers and sellers of the option for HARA utilities. Then we discuss risk measure
properties of the mentioned indifference prices. We show that −pbT (g) and psT (g)
are risk measures.

As a particular case, we study utility maximisation and utility indifference pric-
ing of exponential Levy models. It should be noticed that in Levy models case the
information processes are deterministic processes containing the constants which
are the solutions of relatively simple integral equations. It gives us the possibility
to calculate the indifference prices relatively easy.

We apply identity in law technique to give the explicit calculus of information
quantities for Geometric Brownian motion model. Then, previous results can be
appied and it gives us the explicit formulas for indifference price in Geometric
Brownian motion case.
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Response to Paul A. Samuelson letters and papers
on the Kelly capital growth investment strategy

William T. Ziemba

University of British Columbia, Vancouver, BC

ICMA Centre, University of Reading, UK

The Kelly Capital Growth Investment Strategy (KCGIS) is to maximize the ex-
pected utility of final wealth with a logarithmic utility function. This approach
dates to Bernoullis 1738 suggestion of log as the utility function arguing that
marginal utility was proportional to the reciprocal of current wealth. In 1956 Kelly
showed that static expected log maximization yields the maximum asymptotic long
run growth. Later, others added more good properties such as minimizing the time
to large asymptotic goals, maximizing the median, and being ahead on average
for the first period. But there are bad properties as well such as extremely large
bets for short term favorable investment situations because the Arrow–Pratt risk
aversion index is near zero. Paul Samuelson was a critic of this approach and here
we discuss his various points sent in letters to Ziemba and papers reprinted in the
recent book, MacLean, Thorp and Ziemba (2011). Samuelsons opposition has pre-
vented many finance academics and professionals from using and suggesting Kelly
strategies to students. For example, Ziemba was asked to explain this to Fidelity
Investments, a major Boston investment firm close to and influenced by Samuelson
at MIT. I agree that these points of Samuelson are theoretically correct and respond
to theory. I argue that they all make sense and caution users of this approach to be
careful and understand the true characteristics of these investments including ways
to lower the investment exposure. While Samuelsons objections help us understand
the theory better, they do not detract from numerous valuable applications, some
of which are discussed here.
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Option pricing via stochastic volatility models:
impact of correlation structure on option prices

Akhlaque Ahmad

National Institute of Securities Markets (NISM), India

University of Mumbai, India

In this talk, we discuss stochastic volatility models which play an important
role in option pricing theoretically as well as practical implementation point of
view. Here, we survey few well know stochastic volatility models and discuss three
models governed by square root process (Heston 1993), Ornsten-Uhlenbeck process
(Schobol-Zhu 1999) and double square root process (Zhu 2000) in detail. We esti-
mate model parameters by utilizing India VIX data. We treat stochastic volatility
as risk factor in option pricing dynamics and incorporate it in option pricing frame-
work via characteristic functions of the Fourier transforms. We calculate option
prices for different strike prices by considering that volatility is correlated with
underlying stock prices and observe that there is significant correction in option
prices after incorporation of stochastic volatility in the new framework. We analyse
the behaviour of models on the monyness criteria of options.

Acknowledgements. The author is grateful to his guide Prof. Romar Correa for
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Pricing foreign currency options
under jumps diffusions and stochastic interest rates

Rehez Ahlip1 Marek Rutkowski2

1School of Computing and Mathematics, University of Western Sydney, Australia
2School of Mathematics and Statistics, University of Sydney, Australia

Foreign exchange options are studied in the Heston stochastic volatility model
for the exchange rate which includes jumps in both the spot exchange rate and
volatility dynamics combined with the Cox , Ingersoll and Ross dynamics for the
domestic and foreign stochastic interest rates. The instantaneous volatility is cor-
related with the dynamics of the exchange rate return, whereas the domestic and
foreign short-term rates are assumed to be independent of the dynamics of the
exchange rate. The main result furnishes a semi-analytical formula for the price
of the foreign exchange European call option. The FX options pricing formula is
derived using the probabilistic approach, which leads to explicit expressions for
conditional characteristic functions. We argue that the model examined in this pa-
per is the only analytically tractable version of the foreign exchange market model
which includes jumps in the Heston stochastic volatility model and the exchange
rate with the CIR dynamics for interest rates.

Acknowledgements. The research of M. Rutkowski was supported by the ARC
Discovery Project DP120100895.
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Systemic risk with central counterparty clearing

Hamed Amini1 Damir Filipović1 Andreea Minca2

1Swiss Finance Institute, EPFL, Lausanne, Switzerland
2Cornell University, Ithaca, NY, USA

The reform of the functioning of over the counter (OTC) derivatives markets lies
at the core of the Dodd-Frank Wall Street Reform and Consumer Protection Act of
2010. Among the regulations is that the majority of OTC derivatives, of the order
of hundreds of trillions of US dollars in terms of notional, should be centrally cleared
so as to insure financial stability. The Basel Committee for Banking Supervision,
European and UK regulators have enacted similar proposals.

Introducing a central clearing counterparty (CCP) modifies the intermediation
structure of the market: any financial obligation between members of the CCP is
now intermediated by the CCP, while part of the members’ liquidity is transferred
to the CCP in form of guarantee fund contributions. A CCP would therefore
increase exposure concentration in the market and the critical issue is whether
this is accompanied with proper capitalization of the CCP, proper guarantee fund
requirements and proper management of the guarantee fund.

In this work we study financial networks in a stochastic framework. We measure
systemic risk in terms of a coherent valuation principle. The framework allows us
to examine the effects on systemic risk and price contagion of multilateral clearing
via a central clearing counterparty. We build on the framework introduced by [3]
and use a network representation of the OTC market to analyze contagion effects
without and with central clearing, while accounting for liquidation costs. We prove
existence and uniqueness of an interbank payment equilibrium in conjunction with
the price impact on external assets. We find that a CCP not always reduces
systemic risk and provide sufficient conditions for the latter to hold. We also
propose an optimal capitalization of a CCP based on game theoretic arguments.
A real world calibrated numerical study illustrates our findings.
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[1] H. Amini, D. Filipović, and A. Minca. Systemic risk with central counterparty clearing.
2013.

[2] H. Amini, R. Cont, and A. Minca. Resilience to contagion in financial networks. Math-
ematical Finance, to appear.

[3] L. Eisenberg and T. H. Noe. Systemic risk in financial systems. Management Science,
47(2):236–249, 2001.

Email: hamed.amini@epfl.ch



52 Contributed talks

An equilibrium model for commodity forward prices

Michail Anthropelos1 Michael Kupper2 Antonis Papapantoleon3
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We consider a market model that consists of financial speculators, the producers
and the consumers of a commodity. Producers trade the forward contracts to
hedge the commodity price uncertainty, while speculators invest in these forward
to diversify their portfolios. It is argued that the commodity equilibrium prices are
the ones that clear out the market of spot and forward contracts. Assuming that
producers and speculators are utility maximizers, and that the consumers demand
and the exogenously given financial market are driven by a Lévy process, we provide
closed-form solutions for the equilibrium prices and analyze their dependence on the
model parameters. A dynamic version of this equilibrium model is also established
and discussed.

The producers produce π0 units of the commodity at the initial time 0 and
πT units at the terminal time T ; both π0 and πT are assumed deterministic. At
the initial time t = 0, the producers choose how much of the production π0 are
going to sell at the spot and how much are going to store in order to sell at T .
The spot price of the commodity is determined by the demand function of the
consumers. Although the initial demand function for the commodity is known (a
given function ψ0(·)), the fluctuation of the commodity spot price at time T is
caused by the randomness of the demand function at the terminal time T , denoted
by ψT (·). Producers can hedge the risk of this price fluctuation by shorting forward
contracts with maturity at T written on the commodity. Also, they have the option
to maintain some of their initial production in storage and sell it at the terminal
time T . Therefore, the representative producer’s hedging/storage problem is

sup
α∈[0,π0],hp∈R

E[Up(w(α, hp))] (1)

where w(α, hp) := P0(π0−α)(1+R)+PT (πT +α(1−c))+hp(F −PT ) and Up is her
utility, P0 and F are the commodity spot and forward prices (both endogenously
determined), PT is the commodity spot at time T , R is the interest of the risk-free
investment in period (0, T ) and c is the storage cost considered as percentage.

One the other hand, speculators trade continuously in an exogenously priced
stock market and satisfy the producers’ hedging demand by longing the corre-
sponding forward contracts

sup
θ∈Θ,hs∈R

E
[
Us
(
hs(PT − F ) +

∫ T

0
θsdSs

)]
(2)

Email: anthropel@unipi.gr



Contributed talks 53

where (St)t∈[0,T ] is the stock price process (exogenously priced). We further as-
sume that the market is driven by a vector of stochastic factors modelled by an
d-dimensional Lévy process in the following way: St = S0E(〈u1, Xt〉) and the con-
sumers’ random demand at time T is given by ψT (P ) = ψ0(P ) + 〈u2, XT 〉, where
ui ∈ Rd, i = 1, 2.

The central goal of this paper is to determine the spot and forward prices of
the commodity that makes the forward and the spot market clear out. Given the
optimization problems (1) and (2), the equilibrium price of the forward contract
on this commodity is the one that makes the forward market equilibrate, that is
the price F̂ that solves the equation hp(F̂ ) = hs(F̂ ). The corresponding price P̂0 is
the equilibrium spot price.

A List of Contributions
The main results of this work can be summarized in the following list:

• The existence and the uniqueness of the equilibrium spot and forward prices
are proved when agents’ utility functions are exponential.

• We extensively analyze two market model examples; one with continuous
stochastic factors and one with jumps. In both cases, we get closed-form
solutions of the equilibrium prices and discuss the findings. These formulas
allow us for instance to identify which parameters have an upward impact on
the commodity spot price.

• A dynamic version of the this equilibrium problem is also established and
developed.
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On the optimal debt ceiling

Abel Cadenillas1,2 Ricardo Huamán2

1Ajou University, South Korea
2University of Alberta, Canada

Motivated by the current debt crisis in the world, we consider a government
that wants to control optimally its debt ratio. The debt generates a cost for the
country. The government can reduce the debt ratio, but there is a cost associated
with this reduction. We obtain a solution for the government debt problem. In
particular, we obtain an explicit formula for the optimal debt ceiling.
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Fourier transform methods for pathwise covariance estimation
in the presence of jumps

Christa Cuchiero1 Josef Teichmann2

1Vienna University of Technology, Austria
2ETH Zürich, Switzerland

With a view to calibrating multivariate stochastic covariance models, we provide
a nonparametric method to estimate the trajectory of the instantaneous covariance
process from observations of a d-dimensional logarithmic price process. We work
under the mild structural assumption of Itô-semimartingales allowing in particular
for a general jump structure. By means of this procedure we can determine certain
quantities of general multivariate models from time series observations, even when
considering the model under some pricing measure.

Our approach combines instantaneous covariance estimation based on Fourier
methods, as proposed by Malliavin and Mancino [6, 7], with jump robust estima-
tors for integrated covariance estimation [1, 2, 3, 4, 5, 8, 9]. We study in partic-
ular asymptotic properties and provide a central limit theorem, showing that, in
comparison to the classical estimator of the instantaneous covariance, the asymp-
totic estimator variance of the Fourier estimator is smaller by a factor 3/2. The
procedure is robust enough to allow for an iteration and we can therefore show
theoretically and empirically how to estimate the integrated realized covariance
of the instantaneous stochastic covariance process. For a large class of multivari-
ate stochastic covariance models, this then allows to estimate quantities which
remain invariant under equivalent measure changes, such as volatility of volatility,
from time series observations. We can therefore apply these techniques to robust
calibration problems for multivariate modeling in finance, i.e. the selection of a
pricing measure by using time series and derivatives’ price information simultane-
ously. “Robust” here means that re-calibration is more stable over time, that the
estimation procedures of, e.g., instantaneous covariance also work in the presence
of jumps, and that the procedures are as robust as possible with respect to input
deficiencies.
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Local volatility models: approximation and regularization

Stefan Gerhold

Vienna University of Technology, Austria

We aim at understanding the typical shape of a local volatility surface, by fo-
cusing on its extremes (w.r.t. strike and maturity). The asymptotic behavior is
governed by a saddle-point based formula, akin to Lees moment formula for im-
plied volatility. Applications include local vol parametrization design and assessing
volatility model risk. Secondly, it is well known that local vol models cannot deal
with jumps in the underlying. We propose a simple regularization procedure as a
remedy. Its validity is related to recent work of Yor et al. on Kellerers theorem
from the theory of peacocks (processus croissants pour lordre convexe). The talk
is based on joint work with S. De Marco, P. Friz, and M. Yor.
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A moment matching market implied calibration

Florence Guillaume Wim Schoutens

K.U.Leuven, Belgium

The calibration of a model on a given market situation is a critical and impor-
tant part of any derivative pricing and risk management exercise. Traditionally,
one solves the so-called inverse problem, which consists of finding the parameter
set that is compatible with the observed market price of a set of liquidly traded
derivatives. Typically, a perfect match is not plausible and one looks for an “op-
timal match”. More precisely, one minimizes the distance between the model and
the market prices of benchmark instruments by using a search algorithm. Most
commonly, practitioners are minimizing the root mean square error between model
and market vanilla prices or between model and market implied volatilities. Al-
though the root mean square objective function is the current industry practice,
there exist other alternatives just as suitable. The optimal parameter set typically
strongly depends on the choice of the objective function, leading to significantly
different prices for the more exotic and structured products. Besides the calibration
risk issue, it is well known and documented that several additional problems can
arise with the standard calibration methodology. Firstly, one faces the problem
of selecting an appropriate starting value for the search algorithm used. Indeed,
the objective function to be minimized is typically a non-convex function of the
model parameter set and can thus have several local minima, making the solution
of the standard calibration problem dependent on the initial parameter set, which
is taken as starting value of the optimization algorithm and on the sophistication
of the numerical search performed. Further, one has the typical related problem
of finding a local minimum instead of the global minimum. Also, a calibration
exercise can be quite time consuming, especially if the number of parameters to be
calibrated is becoming large.

Hence, we provide a new calibration formalism which consists of matching the
moments of the asset log-return process with those inferred from liquid market
data. In particular, we derive a model independent formula for the moments of the
asset log-return distribution function by expanding power returns as a weighted
sum of vanilla option payoffs. The new calibration methodology rests on closed-
form formulae only: it is shown that, for a model with N parameters, the moment
matching calibration problem reduces to a system of N algebraic equations which
give directly the optimal parameter set in terms of the market implied standardized
moments of order 2 to order N and avoids thus the delicate choice of a particular
objective function. For the numerical study, we first work out different popular
exponential Lévy models and illustrate how the new methodology outperforms the
current market standard ones in terms of both the computation time and the qual-
ity of the fit. We then consider exponential Lévy models with piecewise constant
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parameters between successive quoted option maturities and extend the moment
matching market implied calibration procedure to take into account the term struc-
ture characteristic of these models. More particularly, we propose a bootstrapping
moment matching calibration. This sequential calibration arises naturally due to
the additive property of cumulants of independent random variables and consists
in solving M independent moment matching systems of N equations, where M
denotes the number of quoted maturities.

The new calibration formalism provides thus an appealing alternative to the
standard calibration problem since, for the Lévy models under investigation, the
method is not requiring any search algorithm and hence any starting value for the
model parameters, it is almost instantaneously delivering the matching parameters
and it avoids local minima problems. The new methodology can also be used as
a preliminary calibration aimed at delivering appropriate market implied starting
values or prior model for the standard inverse problem.
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On a connection between superhedging prices
and the dual problem in utility maximization

Alexander A. Gushchin

Steklov Mathematical Institute, Russia

1. Kramkov and Schachermayer in their seminal paper [3] studied the problem of
maximizing the expected utility of terminal wealth in the framework of a general
incomplete semimartingale model of a financial market. One of the main results
of [3], Theorem 2.1, says that the Fenchel conjugate to the value function of the
utility maximization problem is the value function of a dual problem, and this
dual problem is a minimization problem over the set of the terminal values of
supermartingale densities (deflators). This result was proved in two steps. At
the first step an abstract version of this result, Theorem 3.1, was proved. Its
statement deals with an abstract market model and says that the minimum in the
dual problem has to be taken over a certain set D . In a semimartingale model,
this set D is larger than the set of the terminal values of supermartingale densities.
At the second step it was shown that the value functions of the corresponding
minimization problems over these two sets coincide. An analysis of the proof of the
second step shows that it is based on Theorem 5.5 in Delbaen and Schachermayer
[1] that says that the superhedging price of any nonnegative contingent claim can
be computed as the supremum of its expectations over the set of all equivalent
σ-martingale measures.

The aim of this paper is to understand on an abstract level what is the mecha-
nism responsible for this connection.

2. Let (Ω,F ,P) be a probability space. Denote by L0 the space of all (equivalence
classes of) real-valued random variables. L0 is equipped with the convergence in
probability, and bar means the closure with respect to this convergence. L0

+ is the
cone in L0 consisting of nonnegative random variables.

We consider an abstract market model described as a quadruple (Ω,F ,P,A ).
where A is a convex subset of L0

+. It is assumed also that A contains a random
variable ξ such that P(ξ ≥ κ) = 1 for some κ > 0. A is interpreted as the set
of terminal wealths of an investor corresponding to all her strategies with initial
wealth 1. If the initial wealth is x > 0, then the corresponding set of terminal
wealth is xA .

Put A0 =
(
A − L0

+

)
∩ L0

+, C = A0, D = {η ∈ L0
+ : Eηξ ≤ 1 for all ξ ∈ A }.

Let B ∈ L0
+. A possible definition of the superhedging price of B is

π(B) = inf{x > 0: there is a ξ ∈ A such that B ≤ xξ} = inf{x > 0: B ∈ xA0}

(here and below inf ∅ = +∞). Since we do not assume any kind of closedness of
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A here, an alternative (and more natural) definition of the superhedging price is

π∗(B) = inf{x > 0: B ∈ xC } = sup
η∈D

EηB.

Here the second equality follows from the bipolar theorem by Brannath and Scha-
chermayer. Obviously, π∗(B) ≤ π(B) for all B ∈ L0

+. It is easy to check that

π(B) = π∗(B) for all B ∈ L0
+ ⇐⇒ C ⊆

⋂
λ>1

(λA0).

3. Let U : R → [−∞,+∞) be a utility function. More precisely, here we assume
that U is concave, U(x) ≡ −∞ on (−∞, 0) and U(x) ∈ R on (0,∞), and U is
strictly increasing on (0,∞). No other assumptions on U are imposed. As usual,

V (y) = sup
x>0

[U(x)− xy], y ∈ R.

For a probability measure Q � P define the value function uQ(x), x > 0, in
the utility maximization problem relative to Q and also the value function vQ(y),
y ≥ 0, in the dual minimization problem:

uQ(x) = sup
ξ∈xA

EQU(ξ), vQ(y) = inf
η∈D

EQV
( yη

dQ/dP

)
.

As is shown im Kramkov and Schachermayer [3, Theorem 3.1], see also Gushchin
[2, Theorem 2.2] for a refined version, the following dual relations hold:

uQ(x) = min
y≥0

[vQ(y) + xy], x > 0, vQ(y) = sup
x>0

[uQ(x)− xy], y ≥ 0.

Theorem 1. Let W be a nonempty convex subset of D .
(i) Assume that for a given utility function U , for all Q� P and y ≥ 0,

vQ(y) = inf
η∈W

EQV
( yη

dQ/dP

)
.

Then
π∗(B) = sup

η∈W
EηB for every B ∈ L0

+. (1)

(ii) Let (1) be satisfied. Then

vQ(y) = inf
η∈W

EQV
( yη

dQ/dP

)
for all Q� P and y ≥ 0, and for every utility function U described above.
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What can be inferred from a single cross-section of stock returns?

Serguey Khovansky1 Oleksandr Zhylyevskyy2

1Northeastern University, U.S.A. 2Iowa State University, U.S.A.

We develop a new econometric technique – the Generalized Method of Mo-
ments(GMM) under a non-localized common shock – to consistently estimate pa-
rameters of a financial market model using only a single cross-section of stock
returns. Unlike the existing methods, the technique does not require observing a
long history of stock return data. Our technique is novel in that it accounts for
a non-localized common shock (e.g., market risk) affecting cross-sectional observa-
tions, which induces strong cross-sectional data dependence and renders standard
estimation methods inconsistent. Also, it differs from the popular two-pass regres-
sion method of Fama and MacBeth (1973), which is consistent as the time-series
length grows infinitely large. In contrast, our proposed GMM estimators are shown
to be consistent as the number of stocks in a cross-section grows infinitely large.
We also prove that the estimators are asymptotically mixed normal, which differ-
entiates them from the regular, asymptotically normal GMM case, Hansen (1982).
Despite the asymptotic mixed normality, statistical inference on parameters can
still be conducted using conventional Wald tests. In addition, the overidentifying
restrictions (OIR) test is shown to retain its standard properties. Until now, cross-
sectional GMM estimation under a non-localized common shock has received only
tangential attention in Andrews (2003), where such a possibility is suggested but
not fully explored. To empirically illustrate the technique, we estimate a financial
model that is an adaptation of the classical ICAPM model of Merton (1973). The
model comprises a well-diversified market portfolio index and a cross-section of
stocks. The price of the index follows a geometric Brownian motion and is affected
by a single source of market risk. Individual stock prices follow geometric Brow-
nian motions and depend on this same source of market risk, but are additionally
affected by stock-specific idiosyncratic risks. We discuss in detail the estimation of
an idiosyncratic volatility premium. Using cross-sections of daily, weekly, monthly,
quarterly, and annual U.S. stock returns from 2000–2011, we find that the premium
is positive on daily return data, but tends to be negative on monthly, quarterly,
and annual data.
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Symbolic CTQ-analysis – a new method
for studying of financial indicators

A.V. Makarenko

Constructive Cybernetics Research Group, Russia

Institute of Control Sciences RAS, Russia

Modern financial and economic system extremely complex, and the creation
of accurate adequate models from first principles is very difficult. One of the
approaches to the study of these systems is based on the analysis of financial and
economic time series of the form:

{sk}Kk=1, s ∈ S ⊂ RN , n = 1, N, k ∈ K ⊂ N, k = 1, K. (1)

Every k-th countdown can be associated with moment of time tk, at that tk+1 > tk,

t ∈ T ⊂ R. Variable s
(n)
k – may be interpreted as value of some financial indicator

on moment of time tk.

In recent times, in financial mathematics for the analysis of these time series
are increasingly using methods of statistical physics, nonlinear dynamics and chaos
theory. One of the most effective tools - this a symbolic dynamics, which al-
lows you to explore a variety of complex phenomena in dynamical systems: chaos,
strange attractors, hyperbolic, structural stability, controllability, etc. In the au-
thor article [1] introduced by the finite T-alphabet for encoding shape of trajectories

of {sk}Kk=1 in the space S × K through the matching: {s(n)
k }

K+1
k=0 ⇒ {T

αϕ
k |n}

K
k=1,

Tαϕk =
[
Tαϕk |1 . . . T

αϕ
k |N

]
. The scheme of terms Tαϕ|n is shown in the figure.
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In addition, the approach allows us to analyze the level of synchronization and
its temporal structure for complex ensembles of highly non-stationary and non-
identical chaotic oscillators large dimensions with arbitrary shape and topology of
the network (lattice) [2, 3].

This report illustrates the basic features of the symbolic CTQ-analysis applied
to the study of the dynamics of financial indicators. As an example, we study
the structure and parameters of the synchronization rates of world currencies (the
U.S. Dollar [USD], Euro [EUR], Japanese Yen [JPH], Swiss Franc [CHF], and the
British Pound [GBP]) against the ruble of the Russian Federation [RUB] for period
from 01.01.1999 on 31.03.2013. The initial data are taken from the official web-site
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Central Bank of Russia [4]. The sample size of K = 3 545 counts. Data extraction
and processing was carried out in the program Wolfram Mathematica 9.

Among the results obtained. For specified 5-financial indicators are constructed
and analyzed their of symbolic TQ-images [1, 3]. The analysis revealed a difference
between the structure of the time series for the exchange rate USD/RUB and the
rest currency pairs. Over all possible combinations (v) the specified 5-currency
pairs, the analysis of T-synchronization [2, 3]. For some combinations found non-
random higher values of integral level of synchronicity δαϕ and the entropy of
the structure of synchronous domains ∆SD

E . In the HSD spectra of synchronous
domains, detected long periods LSD of synchronized exchange rate fluctuations.
For all relevant periods obtained their real date (for linking the to external events).
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It is further planned multiscale CTQ-analysis of these financial indicators for
investigation of their temporal structure in order to study the mechanism and
causes of synchronicity.
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Cramér-von Mises test for Gauss processes

Martynov G. V.

Institute for Information Transmission Problems of the Russian Academy of Sciences, Russia

National Research University Higher School of Economics, Russia

One of the problems in the theory of the goodness-of-fit tests is the problem to
test if an observed random process S(t) on [0, 1] is the Gauss process with zero mean
and a covariance function KS(t, τ), t, τ ∈ [0, 1]. This problem arises in particular
in applications of financial mathematics, when the assumption that the process
under study is a Gaussian process, is not deemed sufficient reasonable. This test
should be based on n realisations S1(t), S2(t), ..., Sn(t), t ∈ [0, 1], of S(t). The pro-
cess S(t) and its realisations are considered here as the elements of the separable
Hilbert space L2([0, 1]). We choose as a basis for L2([0, 1]) the orthonormal basis
formed by eigenfunctions g1(t), g2(t), ... of the covariance operator with the kernel
KS(t, τ). The processes S(t) and Si(t) can be represented in the form of expansion
in the mentioned basis as s = (s1, s2, s3, ...) and si = (si1, si2, si3, ...), correspond-
ingly. The vector s has independent components with normal distributions. It can
be transformed to the random vector T = (T1, T2, T3, ...), T ∈ [0, 1]∞, with the in-
dependent components, having the uniform distribution on [0, 1]. The observations
si can be transformed similarly to the observations Ti = (Ti1, Ti2, Ti3, ...) of the
”uniform” distribution on [0, 1]∞. It can be introduced a ”distribution function”

F (t) = F (t1, t2, t3...) = P{T1 ≤ tα1
1 , T1 ≤ tα1

1 , T1 ≤ tα1
1 ...} = tα1

1 tα2
2 tα3

3 ... .

Here, αi > −1 should tend sufficiently quickly toward zero. Correspondingly, the
empirical distribution function can be introduced as

Fn(t) = Fn(t1, t2, t3...) = (1/n) ]{Ti : Ti1 ≤ tα1
1 , Tα2

i2 ≤ t2, ...}.

The empirical process ξn(t) =
√

(n)(Fn(t)−F (t)), t ∈ [0, 1]∞, weakly converges to
the Gaussian process in L2(L2[0, 1]). This process has the zero mean and covariance
function

K(t,v) =

∞∏
i=1

min(tαii , v
αi
i )−

∞∏
i=1

tαii v
αi
i .

The Cramér-von Mises statistic

ω2
n = n

∫
[0,1]∞

 1

n

n∑
i=1

∞∏
j=1

ITi,j<tj −
∞∏
i=1

tαii

 dt.

Limit distribution of the Cramér-von Mises statistic is calculated using the methods
described in the papers listed in the bibliography. The statistic ω2

n can be calculated
by the Monte-Carlo method. In turn, the distribution of the statistic was calculated
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also using the Monte Carlo method. We will present the estimated quantiles of the
distribution ω2

n with αi = 1/i3. The integration was carried out over the cube
[0, 1]10. The percent points are P{ω2

n ≤ 0.90} = 0.34 and P{ω2
n ≤ 0.95} = 0.45. It

can be noted that corresponding percent points for the classical univariate Cramér-
von Mises statistic are 0.35 and 0.46.

Described theory can be directly applied also to testing the distribution unifor-
mity on the unit multidimensional cube.
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The value of Asian options in the Black-Scholes model:
PDE approach

D. L. Muravey

Central Economical Mathematical Institute RAS, Russia

The Asian option (or average value option) is a special type of option contract.
The Asian options payoff is determined by the average underlying price over some
pre-set period of time. There are several types of Asian options: fixed strike (also
known as the average rate) Asian option payout based on the average price of the
underlying asset, and the floating strike the so-called floating rate) Asian option
payout (based on the average price and the spot price of the underlying asset. Note,
that in almost all works about the Asian option value in the Black Scholes model
the fixed strike options are considered. In this work we will consider both fixed and
floating strike options. The results of this work summarize the results of papers
[7], [8], [12] and [13]. This talk is about applying PDE methods for Asian options
value determination. The main method in this work is the PDE approach: it is
known that the value of an option is the expected value from the discount payout
function, and this expected value is the solution of the parabolic PDE boundary
problem. Using the Laplace transform, and the theory of hypergeometric and spe-
cial functions we determine the Green function of the original problem. The report
will show that the Laplace transform of the basic equation can be reduced to the
Whittaker equation (The Schrdinger equation with Morse potential). Based on
this fact, we construct the Green function as the infinite integral of the product
of the first and second kind Whittaker functions (Confluent hypergeometric func-
tion). Using the properties of special functions we find two more representations
of the Green function: the infinite integral of the first kind Macdonald function
(Modified Bessel function) and the double infinite integral of elementary functions.
Then, the option value is the convolution product of the Green function and the
payout function. A big number of works originating from Boyle and Emmanuel [1]
is devoted to the Asian option value problem in the Black-Scholes model. There are
several directions dealing with this issue: the analytical methods, the estimates of
the value, the Monte-Carlo simulations and the PDE numerical methods. The es-
timates of the interested value are covered by Turnbull and Wakeman [2], Milevsky
and Posner[3] and other authors. The numerical approaches are considered Kemna
and Vorst[4], Rogers and Shi [5] , Vecer [6] and other authors. The first work about
analytical methods in the Asian option value problem was Yors [7] work published
in 1992. In this work the value was found as the triple infinite integral. Later,
in 1993 Geman and Yor[8] determined the Laplace transform of value, which can
be inverted numerically. This technique is illustrated by Fu[10], Craddock[11] and
other authors. In 2000 Dufresne determined the value as the infinite series of the
Laguerre polynomials. Finally, Linetsky[13] using the spectral expansion methods
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found the value as the infinite integral of the Whittaker functions, which was esti-
mated through a series of the same functions. We should mention that the Asian
option value problem is partially covered by Yor and Matsumoto [14], [15].
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Sequential hypothesis testing for a drift
of a fractional Brownian motion

Alexey Muravlev

Steklov Institute, Moscow, Russia

PreMo Laboratory, Moscow, Russia

1. LetX = (Xt)t≥0 be a random process defined on a probability space (Ω,F ,P)
by the formula

Xt = µt+BH
t , (1)

where BH = (BH
t )t≥0 is a fractional Brownian motion with Hurst index H ∈ (0, 1),

and µ is a drift value. Recall that BH = (BH
t )t≥0 is a Gaussian process starting

from zero, having zero mean and covariance function

R(s, t) =
1

2
(t2H + s2H − |t− s|2H), s, t ≥ 0.

It is well known that, for H ∈ (0, 1/2) ∪ (1/2, 1), such a process BH is neither a
semimartingale nor a Markov process (see, for example, [1]).

The problem of estimation of the parameters µ and H in the model (1) naturally
arises in a context of modeling of stock prices [2]. In this note we suppose that the
Hurst index H is known and µ is a random variable which is independent of BH

(we suppose that E |µ| <∞). Thus, we follow the Bayesian approach.

2. The problem of a sequential estimation of the drift µ in such a setting was
studied in [2]. Here we consider the problem of testing the hypothesis H1, . . . ,Hn,
Hi : µ ∈ Ai, by a sequential observation of X. The sets A1, . . . , An ⊂ R are
supposed to be nonintersecting and such that

∑
i P (µ ∈ Ai) = 1.

Each testing procedure is represented by a decision rule δ = (τ, dµ) which con-
sists of a stopping time τ of the filtration (FX

t )t≥0, FX
t = σ(Xs; s ≤ t), and an

FX
τ -measurable function dµ taking values 1, . . . , n. The time τ corresponds to

the moment of stopping the observation, and the value of dµ to the hypothesis
accepted.

With each decision rule (τ, dµ) we associate the loss function RX(δ) = E
[
cτ +

W (µ, dµ)
]
, where first component is the observation cost (proportional to the ob-

servation time) and second component is the (nonegative) penalty for making a
wrong decision. The problem consists in finding the decision rule δ∗ = (τ∗, d∗µ)
with the minimal average loss, i. e. such that

RX(δ∗) = inf
δ

RX(δ), (2)

where the infimum is taken over all decision rules δ = (τ, d) with Eτ < ∞. In our
talk we present a general way to tackle such kind of problems.
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3. First of all, we show that the process M(X) defined by

Mt(X) = cH

∫ t

0
s1/2−H(t− s)1/2−HdXs

with

cH =

(
Γ(3− 2H)

2HΓ(3/2−H)3Γ(1/2 +H)

)1/2

is a sufficient statistic in (2). In the case µ = 0 the process M(X) is the well-known
Molchan (or fundamental) martingale (see [3], [1]), but for µ 6= 0 it appears to be
a diffusion.

Next, we transform (2) to the similar problem but for standard Brownian motion
and nonlinear cost of observation. Finally, we reduce our task to the standard opti-
mal stopping problem for Brownian motion. To investigate it one can use methods
from general theory (see, for example, [4], [5]).

Details and particular examples will be provided.
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Weak reflection principle and static hedging of barrier options

Sergey Nadtochiy

University of Michigan, USA

The classical Reflection Principle is a technique that allows one to express the
joint distribution of a Brownian motion and its running maximum through the
distribution of the process itself. It relies on the specific symmetry and continuity
properties of a Brownian motion and, therefore, cannot be directly applied to an
arbitrary Markov process.

We show that, in fact, there exists a weak formulation of this method that allows
us to recover the same results on the joint distribution of a Brownian motion and
its running maximum. We call this method a Weak Reflection Principle and show
that it can be extended to a large class of Markov processes, which do not posses
any symmetry properties and are allowed to have jumps.

We demonstrate various applications of this technique in Finance, Computa-
tional Methods, Physics, and Biology. In particular, we show that the Weak Re-
flection Principle provides an exact solution to the problem of hedging Barrier
options with a semi-static position in European type claims. Our method allows us
to find such hedging strategies in the diffusion- and Lévy-based models. In addi-
tion, we show how it can be used to establish robust static hedging strategies that
are model-independent. We illustrate the theory with numerical examples.
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Subdiffusive Ornstein-Uhlenbeck processes
and applications to finance

Omer Onalan

Faculty of Business Administration,Marmara University, Turkey

In this paper we analyse the subdiffusive structure of financial markets using
the subdiffusive Ornstein-Uhlenbeck process as a model of asset prices. We use
the subordinated Langevin equation approach to obtain model. The subordinator
process is the inverse tempered stable distribution. Using that phenomena, the role
of subordinator in Langevin equation is parellel to role played by Riemann-Liouville
operator in fractional Fokker-Planck equation. We investigated the evolution of the
probability density function of the subordinated Ornstein-Uhlenbeck process and
we review the simulation of fractional Langevin equation. This model combines the
mean-reverting behavior, long range dependence and trapping events properties of
financial market. We applied the subordinated model to European call options for
obtaining the fair option pricing formula.
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Exponential functionals of Lévy processes

Vladimir Panov

University of Duisburg-Essen (Germany) and Premolab (MIPT, Russia)

Consider the exponential functional

At =

∫ t

0
eξs ds, (1)

and its terminal value A∞ = limt→∞At, where ξs is a Lévy process. The inte-
gral A∞ naturally arises in a wide variety of financial applications as a stationary
distribution of the generalized Ornstein-Uhlenbeck process,

Vt = e−ξt
(
V0 +

∫ t

0
eξs−ds

)
,

see for instance papers about COGARCH (COntinious Generalized AutoRegressive
Conditionally Heteroscedastic) model [3] and Paulsen’s risk model [1]. A∞ plays
also a crucial role in studying the carousel systems [5], and self-similar fragmenta-
tions [2].

Denote the Lévy triplet of the process −ξs by (c, σ, ν), i.e.

ξs = − (cs+ σWs + Ts) , (2)

where Ts is a pure jump process with Lévy measure ν. The aim of this study is to
statistically estimate the Lévy triplet of ξs given by the observations of the integral
A∞. The algorithm presented below is based on the following recursive formula for
the moments of A∞, which is completely proved in [4]:

E
[
As−1
∞
]

=
φ(s)

s
E [As∞] , (3)

where s ∈ C is such that 0 < <(s) < sup
{
z ≥ 0 : E[ezξ1 ] ≤ 1

}
, and φ(s) is a

Laplace exponent of the process ξ, i.e., φ(s) := − logE
[
esξ1

]
. In particular case

σ = 0, the Laplace exponent can be represented as

φ(u+ ıv) = c (u+ ıv)−
∫ +∞

0
e−ıvxν̄(dx) +

∫ +∞

0
ν(dx), u, v ∈ R, (4)

where ν̄(dx) = e−uxν(dx). The formula (4) motivates the algorithm, which we
describe below.

In what follows, we suppose that N observations Y1, ..., YN of the integral A∞
are given.

1. Estimate the As∞ for s = u + ıv, where u is fixed and v varies by Ê [As∞] =∑N
i=1 Y

s
i /N.
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2. Estimate φ(s) by φ̂(s) = s Ê
[
As−1
∞
]
/Ê [As∞] . This estimate is based on (3).

3. Estimate c as a coefficient of the (asymptotical) regression problem:

=φ̂(s) = c=(s)−=Fν̄(−=(s)). (5)

4. Estimate a =
∫ +∞

0 ν(dx) by

â := mean
(
<φ̂(s)− ĉ<(s)

)
. (6)

5. Estimate Fν̄(v) in the points =(s) by (4):

F̂ν̄(−=(s)) = −φ̂(s) + ĉs+ â. (7)

6. Estimate ν by

ν̂(x) =
1

2π
eux
∫
R
eıvxF̂ν̄(−v)K(vhn)dv, (8)

where K is a regularizing kernel supported on [−1, 1] and hn is a sequence of
bandwidths which tends to 0 as n→∞.

In this talk, we discuss some theoretical propeties of the proposed algorithm and
provide examples.
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Pricing and hedging variance swaps on a swap rate

Deimante Rheinlaender

ICAP, United Kingdom

We consider pricing and hedging of the generalized variance swap on a swap
rate. It pays the weighted realized swap rate variance.

The variance swaps related market is very well established in equity derivatives.
The foundations were laid independently by Neuberger [9] and Dupire [5] who came
up with the model independent variance swap replication in terms of a dynamic
trading strategy and a European payoff on the underlying stock or index. There
have been many generalizations in terms of payoffs and also the underlying model:
corridor variance swaps were considered in Carr and Lewis [3] and general weighted
variance swaps were investigated in Lee [7]. The gamma variance swap, as in Lee
[6] is the most common variance swap in equities. Variance swap pricing relies on
the static replication techniques as in Carr and Madan [4].

In contrast to equities, the fixed income variance swaps have received very little
attention so far. This is partially explained by the fixed income variance swaps
market being relatively new. On the quantitative research side the same techniques
used for equity derivatives can often be adapted to deal with the equivalent fixed
income derivatives. This approach was adapted in Merener [8] who obtained the
dynamic hedging strategy for the general weighted variance swap under certain
yield curve assumption.

A number of questions have yet to be addressed. In particular, the restriction
imposed on the yield curve is not compatible with the absence of arbitrage. It is
also a wrong approximation in the degenerate case of a single period swap. In this
case one should work with exact expressions since no approximations are needed.
In general one needs to work under weaker assumptions in order to obtain arbitrage
free hedging results.

In this research we suggest an alternative swap rate model to the classical ap-
proach. The latter is based on the underlying process approximations. In particu-
lar, we identify and approximate only the relevant conditional expectation processes.
The exact conditional expectations being approximated as well as their number
depend on each individual problem. The key feature of the model is that it exer-
cises the degree of freedom between the conditional moments. Working under the
minimal assumption allows us incorporating the seemingly conflicting functional
relations into the model, in particular related to the absence of arbitrage.

We derive the absence of arbitrage constraint for such approximations. In par-
ticular, when the approximating function depends on the swap rate alone, we show
that a certain conditional expectation has to be an affine function of the swap
rate. On the other hand, absence of arbitrage usually does not imply functional
forms for other conditional expectations and various functional relations between
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the underlying financial variables as well as market evidence may be incorporated
into the model.

This approach is used to price and dynamically hedge the variance swap on a
swap rate. We consider the generic payoff where realized variance is weighted by
a function h. The hedging results are obtained for the general swap rate model
approximation g. The dynamic strategy depends on the solution of the ODE. We
also provide the solution that can be expressed as a double integral in terms of
functions h and g. This result generalizes and also simplifies the result in Merener
[8].

The pricing results we obtain are new. In particular we derive a different ODE
for the pricing function. This ODE is simpler and in many cases can be solved
explicitly. In order to obtain a variance swap price it remains to price a European
payoff on the terminal swap rate. It is interesting that in general exact dynamic
hedging is not possible for the swap rate variance swap. Hence a hedging strategy
represents the average dynamic hedging. This yields that dynamic hedging strategy
present value is not identically equal to that of a variance swap. We illustrate this
by a numerical example.
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Hedging of barrier options via a general self-duality

Thorsten Rheinlaender

Vienna University of Technology, Austria

We study semi-static hedging of barrier options, and propose an extension of the
known methods to cover the case of continuous stochastic volatility models when
there is correlation between the price and the volatility process.

Semi-static refers to trading at most at inception and a finite number of stopping
times like hitting times of barriers. The possibility of this hedge, however, requires
classically a certain symmetry property of the asset price which has to remain
invariant under the duality transformation. This leads naturally to the concept of
self-duality which generalises the put-call symmetry, see [2] and more recently [3],
[4]. To overcome the symmetry restriction, a certain power transformation has been
proposed in the latter two papers which leads to the notion of quasi self-duality.
While this works well in the context of exponential Lévy processes, see [6], it does
not essentially change the picture for continuous stochastic volatility models. As
has been shown in [5], a quasi self-dual price process in this setting is up to the
costs of carry the stochastic exponential of a symmetric martingale. In particular,
this would exclude any non-zero correlation between the volatility and the price
process which is unrealistic.

We propose a different approach to deal with the correlated case: by a multiplica-
tive decomposition, the price process is factorised into a self-dual and a remaining
part. This latter part is used as a numeraire for a change of measure. Under this
new measure called R, replacing the risk-neutral measure Q, the price process S is
no longer a martingale but gets replaced by a modified price process D. We then
show that always a generalisation of self-duality holds if one replaces in one side of
the defining equation the measure Q by R, and the process S by its modified form
D, respectively.

This general self-duality allows to derive a semi-static hedge to barrier options
as in the classical self-dual case. However, unlike in the latter case where one can
combine two terms to one multiplied with the same indicator function, here one
has to face two different indicator functions involving S respectively D. It turns
out that one can estimate the difference logS − logD by moments of a cumulative
variance option, and can also express the relative entropy H (R,Q) in terms of
those.

An alternative representation allows one to trade the barrier option at the hitting
time for a time-dependent put option written on the modified price process, at
zero cost. This can be either hedged dynamically, or else we propose the following:
firstly, we use a put option written on the original price process as a semi-static
hedge. This removes the time-dependency, since at the hitting time the price
process equals the barrier level in our continuous stochastic volatility model. The
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difference to the put written on the modified price process can then be hedged
dynamically, and we provide a representation of the resulting hedge portfolio.

Starting from the general representation, we then derive the dynamic hedg-
ing portfolios by Malliavin calculus, in particular the Clark-Ocone formula. In a
stochastic volatility context, this necessarily involves higher greeks. Such an ap-
proach has been pioneered for European options in the Heston model in [1]. Here we
adapt this approach to our specific situation, i.e. hedging of a time-dependent put
option written on the modified price process under the measure R, and generalise
it to our general stochastic volatility framework.

This is joint work with Elisa Alós and Zhanyu Chen.
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[1] E. Alòs, A decomposition formula for option prices in the Heston model and applications
to option pricing approximation. Finance and Stochastics, 16 (2012), pp. 403-422

[2] P. Carr, and A. Chou, Breaking barriers, Risk 10 (1997), pp. 139-145

[3] P. Carr, and R. Lee, Put-call symmetry: extensions and applications, Mathematical
Finance, 19 (2009), pp. 523-560

[4] I. Molchanov, and M. Schmutz, Multivariate extension of put-call symmetry. SIAM
Journal of Financial Mathematics, 1 (2010), pp. 398-426

[5] T. Rheinländer, and M. Schmutz, Self-dual continuous processes. Stochastic Processes
and their Applications, 123 (2013), pp. 1765–1779

[6] T. Rheinländer, and M. Schmutz, Quasi self-dual exponential Lévy-processes. ArXiv:
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On a generalized shadow price process
in utility maximization problems under transaction costs

Dmitry B. Rokhlin

Southern Federal Univeristy, Rostov-on-Don, Russia

1. We consider a discrete-time financial market model with bid-ask spread,
where trader’s terminal wealth X is given by

XT (γ) = 1 +

T∑
t=0

(St(∆γt)
− − St(∆γt)+), γ−1 = 0, γT = 0; ∆γt := γt − γt−1.

Here St ≤ St are the bid and ask prices of a risky asset (stock) and γt is the
number of stock units in trader’s portfolio at time moment t, x+ = max{x, 0},
x− = max{−x, 0}. Note that for the frictionless model (S = S = S) this formula
shapes to the customary form: 1 + (γ ◦ S)T := 1 +

∑T
t=1 γt−1∆St.

All processes are adapted to a filtration (Ft)Tt=−1, F−1 = {∅,Ω}, FT = F on a
probabilty space (Ω,F ,P). It is assumed that St, St ∈ Lq(Ft) for some q ∈ [1,∞]
and γt ∈ L∞(Ft). We allow portfolio constraints of the form (γt)

T−1
t=0 ∈ Y, where

Y is a convex subset of
∏T−1
t=0 L∞(Ft).

A functional Φ : Lq(FT ) 7→ [−∞,∞] is called monotone if Φ(X) ≥ Φ(Y ) when-
ever X ≥ Y , X,Y ∈ Lq(FT ) and quasiconcave if

Φ(α1X + α2Y ) ≥ min{Φ(X),Φ(Y )}

for all X,Y ∈ Lq(FT ), α1 + α2 = 1, αi ≥ 0. We admit that trader’s utility is
represented by a monotone quasiconcave functional Φ.

Following [4] we call an adapted process S ∈ [S, S] a shadow price if

µS := sup{Φ(1 + (γ ◦ S)T ) : γ ∈ Y} = λ := sup{Φ(XT (γ)) : γ ∈ Y}.

Thus, it is impossible to outperform the optimal utility value λ related to the
market with friction by trading at a frictionless shadow price. So, a shadow price
can be interpreted as a least favorable frictionless price from trader’s point of view.

2. The existence of a shadow price for the case of finite Ω (and a more traditional
utility functional) was proved in [4]. In general a shadow price need not exist: see
examples given in [1], [2], [5]. However, it was shown in [5] that the existence of a
generalized shadow price process S∗ is guaranteed under rather weak assumptions.
This process corresponds to the relaxed utility functional.

To be precise, put
Ψ(S, γ) = Φ(1 + (γ ◦ S)T )

and σt = σ(Lq(Ft), Lp(Ft)), where 1/p + 1/q = 1. So, σt is the weak topology of
Lq for q ∈ [1,∞) and the weak-star topology of L∞. In any case the set

[St, St] = {St ∈ Lq(Ft) : St ≤ St ≤ St}
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is σt-compact. Consider the vector space
∏T
t=0 L

q(Ft) with the product topology σ

and denote by Ψ̂(·, γ) the σ-lower semicontinuous envelope (relaxation) of Ψ(·, γ)
as a function on [S, S] =

∏T
t=0[St, St]:

Ψ̂(S, γ) = sup
V ∈N (S)

inf
S′∈V

Ψ(S′, γ).

Here N (S) is the neighbourhood base at S of the topology σ, restricted to [S, S].
As is known, Ψ̂(·, γ) is the largest σ-lower semicontinuous function majorized by
Ψ(·, γ).

Consider the optimization problem for the relaxed functional Ψ̂:

µ̂S = sup{Ψ̂(S, γ) : γ ∈ Y}.

We call S∗ a generalized shadow price if µ̂S∗ = λ.

Theorem 1. Let Φ be monotone and quasiconcave, St, St ∈ Lq(Ft), t = 0, . . . , T
for some q ∈ [1,∞]. Then there exists a generalized shadow price S∗ ∈ [S, S] and
the following minimax relations hold true:

λ = sup
γ∈Y

Φ(XT (γ)) = sup
γ∈Y

inf
S∈[S,S]

Ψ̂(S, γ) = sup
γ∈Y

inf
S∈[S,S]

Ψ(S, γ)

= inf
S∈[S,S]

sup
γ∈Y

Ψ̂(S, γ) = sup
γ∈Y

Ψ̂(S∗, γ) = µ̂S∗ .

Theorem 1 was deduced in [5] from the intersection theorem of [3] (Theorem 3).
If there exists an optimal solution γ∗ of the utility maximization problem for the
market with friction, then a pair (γ∗, S∗), where S∗ is a generalized shadow price,
is exactly a saddle point of the relaxed utility function Ψ̂(S, γ) [5] (Theorem 2.3).

If the original utility function Ψ(S, γ) is already lower semicontinuous in S in
an appropriate topology, Theorem 1 implies the existence of a shadow price. We
present an example where Ψ 6= Ψ̂, but a generalized shadow price S∗ is in fact a
shadow price, and examples, where a generalized shadow price exists and a shadow
price does not. In addition, we discuss the connection between shadow prices and
duality theory.
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Portfolio selection and an analog of the Black-Scholes PDE
in a Lévy-type market

Evelina Shamarova Rui Sá Pereira

Centro de Matemática da Universidade do Porto, Portugal

Recent developments on financial markets have revealed the limits of Brownian
motion pricing models when they are applied to actual markets. Lévy processes,
that admit jumps over time, have been found more useful for applications. Thus,
we suggest a Lévy model based on Forward-Backward Stochastic Differential Equa-
tions (FBSDEs) for option pricing in a Lévy-type market. We show the existence
and uniqueness of the solution to the following FBSDEs driven by a Lévy process
Lt: {

Pt = p+
∫ t

0 f(s, Ps,Ws, Zs) ds+
∑∞

i=1

∫ t
0 σi(s, Ps−,Ws−) dH

(i)
s ,

Wt = h(PT ) +
∫ T
t g(s, Ps,Ws, Zs) ds−

∑∞
i=1

∫ T
t Z

(i)
s dH

(i)
s ,

where Pt is the d-dimensional price process, Wt is the wealth process, Zt is an
Rd × `2-valued portfolio-related process, H(i)’s are the orthonormalized Teugels
martingales associated to the Lévy process Lt, and [0, T ] is an arbitrary time inter-
val. Using our model, we describe the portfolio selection procedure in a Lévy-type
market. Moreover, we present a Lévy analog of the Black-Scholes PDE as a par-
tial integro-differential equation, and obtain its solution from the solution to the
FBSDEs.
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Optimization of credit policy of bank and the government
guarantees in a model of investment in a risky project

Vadim Arkin Alexander Slastnikov

Central Economics and Mathematics Institute, Russia

There is a project that, in a certain period after investing (lag of fixed assets)
can bring some (random) income flow. The project is risky, i.e. with probability
q, 0 < q < 1 it fails (remains unrealized) and investor defaults, and with probability
1− q it starts acting.

It is assumed that the required investment I are credited by bank on certain
terms (loan agreement). These terms include loan amount and duration, repayment
of the loan principal, and interest. These elements make up the credit policy K of
bank (in relation to given investment project).

If the project became operational, the repayment of loan and accrued interest
on it starts after the lag, but in case of investor’s default the loan is not returned.
This in turn leads to higher interest rates.

In order to attract investment in risky projects, there is a mechanism of govern-
ment guarantees. This means that if the project fails and investor does not return
the credit, the bank receives compensation from the Government (reimbursement
of credit) as a part θT of issued loan. This mechanism allows, in particular, to
reduce the interest rate on the loan.

The tax system is represented in the model by coefficient γ of the tax burden,
which is a share of tax payments in profits.

The aim of the investor is to solve an investment timing problem, i.e. on the
base of the observed information on current market prices and the forecast of the
future flow of profits from the project to choose the investment time in such a way
that the expected net income value of the project (NPV), discounted to zero (base)
time will be maximal.

This optimal time of investment τ∗, under certain assumptions about the process
of profits πt (see [1, 2]) is specified by a threshold that depends on the credit policy
of the bank.

Knowing the dependence of investor behavior on credit terms, the bank chooses
the credit policy, maximizing the expected discounted profits from the project,
equal to the difference between the expected return on the loan (from the investor
and the state) and the amount of the loan. This optimal credit policy is a function
of the part of guaranteed reimbursement of credit.

Knowing the optimal credit policy of the bank and the corresponding optimal
investor behavior as a function of the part of the reimbursement, the government
determines the optimal part of a loan reimbursement so that appropriate budgetary
effect will be maximal. We define the budgetary effect as the difference between the
expected tax revenue from the project and the expected costs of the government
on reimbursement of the bank loans (at the optimal behavior of the investor).
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So, an optimal investment time, optimal credit policy and optimal government
guarantees can be viewed as Stackelberg equilibrium point in a three-player game.

Assuming that the profit flow is described by a geometric Brownian motion,
we can obtain the explicit form of the optimal credit policy of the bank and the
optimal part of the guaranteed reimbursement of credit.

In this case it is shown that the optimal part of the reimbursement is inversely
proportional to the risk q and increases in the coefficient of tax burden. As for
the dependence of the optimal part of the reimbursement on the volatility of the
project, it is determined by the value of the tax burden. For small values of the tax
burden (not exceeding a certain level), the optimal part decreases in volatility, and
at higher values (above this level) increases. It is also shown that the optimal (from
the bank’s point of view) interest on the loan decreases linearly on the part of the
reimbursement, and under the optimal part increases both in risk and volatility of
the project, and decreases in tax burden.
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GARCH model with jumps augmented with news analytics data

S. P. Sidorov1 V. A. Balash1 A. R. Faizliev1 E. Korobov1 P. Date2

1Saratov State University, Russia 2Brunel University, UK

The work presented here tries to evaluate the impact of news on stock volatility
through a small empirical study on augmented GARCH–Jumps models. While
news analytics tools became more popular among investors as indicated in [1],
there are not so much research works studying quantitative impact of news on
stock volatility. It is worth to be mentioned the pioneering works [3] and [2]. In
the paper of [3] firm-specific announcements were used as a proxy for information
flows. It was shown that there exists a positive and significant impact of the arrival
rate of the selected news variable on the conditional variance of stock returns on
the Australian Stock Exchange in a GARCH framework. They split all their press
releases into different categories according to their subject. In the second of the
papers the author examines impact of news releases on index volatility. In the
paper [4] was shown that the GARCH(1,1) model augmented with volume does
remove GARCH and ARCH effects for the most of the FTSE100 companies, while
the GARCH(1,1) model augmented with news intensity has difficulties in removing
the impact of log return on volatility.

Based on empirical evidences for some of FTSE100 companies, it will be exam-
ined two GARCH models with jumps. First we consider the well-known GARCH
model with jumps proposed in [5]. Then we introduced the GARCH-Jumps model
augmented with news intensity and obtained some empirical results. The main
assumption of the model is that jump intensity might change over time and that
jump intensity depends linearly on the number of news. It is not clear whether
news adds any value to a jump-GARCH model. However, the comparison of the
values of log likelihood shows that the GARCH-Jumps model augmented with news
intensity performs slightly better than ”pure” GARCH or the GARCH model with
Jumps.

Acknowledgements. The work was supported by RFBR, grant 13-01-00175.
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American put option valuation by means of Mellin transforms

Tatiana Vasilyeva1 Olessia Vasilyeva2

1Volgograd State University, Russia
2Düsseldorf, Germany

In this report we consider the Mellin transform derived on Black – Scholes
formulae in year 2003 by Panini and Srivastav [1, 2]. The authors use Mellin
transforms to derive at first an equation for the price of a European put on a single
underlying stock and then extend to the Amercan put option[4, 5]. One of the
techniques to solving Black – Scholes equations called Mellin transformation, and
suggested by Panini [1, 2] for basket options was considered and was derived a new
integral representations for the price and the free boundary of the American option
in one dimension. We improve the numerical part of Panini’s computations [1, 2, 3]
by using the Newton’s method for the free boundary condition [4, 5].

Consider now the American put option, the early exercise feature of this option
gives rise to a free boundary problem. As far as we known, there exists no closed-
form analytical expression for the value of American put and its free boundary.
The Black–Scholes equation for the price of an American put p(S, t) satisfies the
nonhomogeneous equation

∂p

∂t
+

1

2
σ2S2 ∂

2p

∂S2
+ rS

∂p

∂S
− rp = f(S, t), (1)

where t is current time 0 < t < T , S(t) is asset price 0 < S <∞, T is expiry
date, r is the interest rate, σ is volatility of the market prices. The inhomogeneity
is given by

f = f(S, t) =

{
−r ·K, if 0 < S ≤ S∗(t)

0 if S > S∗(t)

}
.

The final time condition is
P (S, T ) = θ(S)

and the free boundary is determined by

P (S∗, t) = K − S∗, ∂P

∂S
|S=S∗= −1.

We take the Mellin transform and for the price P (S, t) they get

P (S, t) = p(S, t) +
rK

2πi

∫ T

t

∫ c+i∞

c−i∞
S−v

(S∗(x))v

v
e

1
2
σ2h(v)(x−t) dv dx. (2)

Substituting S = S∗(t) they get the following integral equation for the free bound-
ary

K − S∗(t) = p(S∗(t), t) + +
rK

2πi

∫ T

t

∫ c+i∞

c−i∞

1

v
(
S∗(t)

S∗(x)
)−ve

1
2
σ2h(v)(x−t) dv dx. (3)
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Then we use the Newton’s method for the calculation of free boundary S∗(τ).
The Figure 1 shows the isolines of the function of the American put option as the
smooth conjunction of the family of the strict vertical isolines with the curve linear
isolines.

Figure 1: Isolines of the space for the function p(s, τ) with different choices for
sigma option with K = 45; σ = 0, 3; T = 0, 5833

Acknowledgements. Authors would like to thank Professor M.Ehrhardt for
formulation of the problem and useful discussions.
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Detection of trend changes in stock prices

Mikhail V. Zhitlukhin

Steklov Mathematical Institute, Moscow, Russia

We consider a model of stock prices which initially increase but start to decrease
after an unknown moment of time. The aim is to detect this moment and to
sell the stock maximizing the gain. Applying methods of the theory of quickest
changepoint detection, we show that the optimal detection rule consists in observing
the posterior probability process (or, equivalently, the Shiryaev–Roberts statistics),
and selling the stock as soon as this process exceeds a time-dependent threshold.

We apply the result to real market data and show that it provides good perfor-
mance.

The research was supported by the Laboratory for Structural Methods of Data
Analysis in Predictive Modeling (RF government grant, No 11.G34.31.0073).

This is a joint work with A. N. Shiryaev and W. T. Ziemba.
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About (B, S)-market model
with stochastic switching of parameters

Belyavsky G. I. Danilova N. V.

South federal university, Russia

Consider the (B,S)-market model:

dSt = St[r(St)dt+ σ(St)dWt],

dBt = r(St)Btdt,

where (St)
T
t=0, (Bt)

T
t=0 – the value of assets, (Wt)

T
t=0 – Wiener process with respect

to martingale measure P∗, r(St) – interest rate, σ(St) – volatility.
Suppose, that we have the barrier M(t) = cedt with c, d ≡ const. The parame-

ters of the model are switched in the stopping time

τ = inf{0 ≤ t ≤ T : St = Mt}.

Namely,

r(St) = r1I{0≤t<τ} + r2I{τ≤t≤T},

σ(St) = σ1I{0≤t<τ} + σ2I{τ≤t≤T},

where σ1 > 0, σ2 > 0.
The coefficients of the differential equation do not satisfy the standard conditions

of existing and uniqueness of continuous solution, but the solution of the equation
exists and is unique:

St =


S0 ·

(
exp

(
r1 −

σ2
1

2

)
t+ σ1Wt

)
, t ∈ [0, τ ],

Mτ ·
(

exp

(
r2 −

σ2
2

2

)
(t− τ) + σ2Wt−τ

)
, t ∈ (τ, T ],

and

Bt =

{
B0e

r1t, t ∈ [0, τ ],

Bτe
r2(t−τ), t ∈ (τ, T ].

Theorem 1 (see [2]). The fair price of the European call option fT = max(ST −
K, 0) is C = E∗C(τ) where C(τ) given by

C(τ) = S0Φ

(
−d(τ) + χ2(τ)

χ(τ)

)
−K B0

BT
Φ

(
−d(τ)

χ(τ)

)
with

d(τ) = ln

(
K

S0

)
−
(
r1 −

σ2
1

2

)
τ −

(
r2 −

σ2
2

2

)
(T − τ) , χ(τ) =

√
σ2

1τ + σ2
2(T − τ).
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Here Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt is the distribution function of the standard normal

law and E∗ denotes the expectation with respect to martingale measure P∗.
Theorem 2 (see [2]). Let c > S0 and r1−σ2

1/2−d > 0. Then τ has the distribution:

p∗(x) =


g(x), 0 ≤ x < T,

1−
∫ T

0
g(x)dx, x = T,

0, x > T,

where

g(x) =

√
b

2π
eab

1

x
3
2

exp

(
−1

2

(
ax+

b

x

))
and

√
a =

1

σ1

(
r1 −

σ2
1

2
− d
)
,
√
b =

1

σ1
ln

(
c

S0

)
.

So,

E∗C(τ) =

∫ T

0
C(x)g(x)dx+ C(T )

(
1−

∫ T

0
g(x)dx

)
.

Theorem 3 (see [1]). The following identity holds

P

(
sup

0≤t≤T
(St −Mt) < 0

)
= Φ

 ln
(
c
S0

)
−
(
r1 −

σ2
1

2 − d
)
T

σ1

√
T


− exp

2 ln
(
c
S0

)(
r1 −

σ2
1

2 − d
)

σ2
1

Φ

 ln
(
S0
c

)
−
(
r1 −

σ2
1

2 − d
)
T

σ1

√
T

 .

At adequate selection of parameters of model the fair price will be less Black-
Scholes price.

References

[1] Shiryaev A.N. The bases of stochastic mathematical finance// M.:FASIS, 1998.
T.1.Facts,models.512 p. T.2.Theory.544 p.

[2] Belyavsky G.I., Danilova N.V. The diffusion models with stochastic switching of param-
eters. Calculations and financial applications// Lambert Academic Publishing, 2012.
122 p.



Posters 93

Expected utility maximization in exponential Lévy models
for logarithmic and power utility functions

Mikhail Y. Ivanov

Moscow State University, Moscow, Russia

In this work we study the problem of utility maximization for a financial investor.
We consider a model of financial market, which consists of one asset and has a finite
maturity T . The price of the asset is modeled with a semimartingale S. The capital
of the investor’s portfolio has the form X = x+H ·S, where constant x denotes the
initial wealth and H is a predictable S-integrable process, which specifies amount
of the asset held in the portfolio. We assume that all capitals are strictly positive
X (x) = {Xt > 0 : X0 = x}. The investor has a concave utility function U . His
main aim is to maximize the expected terminal utility EU(XT ), and we can denote
the value function of this problem

u(x) = sup
X∈X (x)

E[U(XT )].

We can also consider the dual problem here. Let V (y) = supx>0(U(x)−xy), y > 0.
Then the value function of the dual problem is

v(y) = inf
Y ∈Y(y)

E V (YT ).

Utility maximization and the dual problem were considered by Kramkov and
Schachermayer in [3]. They indicated several properties for the solutions of these
problems and connections between them. Some relations were also found for func-
tions u and v. This research was made on general assumptions. In our work
we show that in particular cases an explicit form and additional properties can
be found for the solutions. To make this possible the process S is assumed to
be a stochastic exponential of a Lévy process L, ∆L > −1, which is completely
determined by its triplet (b, c, ν). Besides, we consider only the following utility
functions U(x) = lnx and U(x) = xp/p. Kallsen [4] showed an explicit form for
the solutions under several conditions, one of them de facto required the solution
of the dual problem to be an EMM. In our previous works [1, 2] we solved this
problem for the logarithmic utility for all possible triplets when L is not monotone,
which is equivalent to the absence of arbitrage and can be stated in terms of the
Lévy triplet, see [1]. No other restrictions were placed. The solution of the primary
problem has the form E(αL), where α is a constant. There are only three options
for the solution of the dual problem and they can be characterized in terms of the
triplet:

1. Y ∗ is the density process of an equivalent martingale measure.
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2. Y ∗ is a martingale, but not the density process of an equivalent σ-martingale
measure.

3. Y ∗ is a supermartingale, but not a martingale.

Basically the restriction u(x) <∞ is placed when solving the problem of utility
maximization. But in the logarithmic case we can eliminate this restriction by
considering the problem of finding the numéraire portfolio, which exists without
the mentioned restriction. It coincides with the solution of primary problem X∗

when the latter exists.
Now consider the case when U(x) = xp, 0 < p < 1. Here we cannot dismiss the

condition mentioned above, so EX∗pT < ∞. Let P be the initial measure. Then
there exists a unique constant y∗, which determines the solution to the problem with
logarithmic utility for measure Q, where Q is determined by Girsanov parameters
(β, Y ) = (py∗, (1+y∗x)p). E(y∗L) is the optimal portfolio for both logarithmic and
power cases. Almost the same is true for the solutions Y ∗P , Y

∗
Q of the dual problems

regarding measures P and Q. Their ratio is equal to a constant:

Y ∗Q/Y
∗
P = y0,

where y0 = u′(1) = EX∗pT . From this fact we can easily derive that Y ∗P satisfies
to one of the 3 options mentioned above and this can be stated in terms of the
triplet. In such a way the solution to the power utility problem can be found via
logarithmic case, applied to another measure Q. This method of solving differs
from commonly used ones, which usually consider the logarithmic utility problem
as a particular case of the utility with a power function, where p tends to 0.

Acknowledgements. The author is grateful to A. A. Gushchin for his support
in solving the problem and helpful comments.
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On optimal dividend payout in a factor diffusion model

Georgy Mironenko Dmitry B. Rokhlin

Southern Federal University, Rostov-on-Don, Russia

1. We consider a firm whose capital X is affected by an exogenous (macroeco-
nomic) random factor Y , and assume that (X,Y ) evolve according to the system
of stochastic differential equations

dXt = (µ(Xt, Yt, αt)− ct)dt+ σ(Xt, Yt, αt)dWt,

dYt = µ̂(Yt)dt+ σ̂(Yt)
(
ρdWt +

√
1− ρ2dŴt

)
,

X0 = x, Y0 = y,

where (W, Ŵ ) are independent standard Wiener processes. The dividend-payment
strategy ct ∈ [0, c] and business plan strategy αt ∈ {1, . . . , n} are progressively

measurable with respect to the filtration, gererated by (W, Ŵ ), and ρ ∈ [0, 1] is a
correlation factor. We assume that the stochastic control problem is in the standard
form [9] (Chap. 3), that is, µ, σ, µ̂, σ̂ satisfy uniform Lipschitz and linear growth
conditions. The firm wants to maximize the expected total discounted dividends.
The correspondent value function is given by

v(x, y) = sup
c,α

E

∫ τ

0
e−δtctdt,

where τ = inf{t ≥ 0 : Xt = 0} is the bankruptcy moment and δ > 0 is a given rate
of discount.

The optimal dividend policy problem in a diffusion model without external in-
fluence Y was first studied in [7, 4, 1], where it was established that a typical
optimal policy is to pay maximal dividend rate when firm’s capital X is above
some critical level x∗, and to pay nothing when X is below x∗. The value function
in the correspondent one-dimensional model was shown to be twice continuously
differentiable. The influence of exogenous factors in the form of regime shifts, gov-
erned by a Markov chain, much more recently was examined in [8, 5]. Our aim is
to study the case where an exogenous factor Y follows a diffusion process.

2. From the theory of stochastic optimal control it is known that, at least
formally, the value function v satisfies the Hamilton-Jacobi-Bellman equation in
the half-space:

inf
c∈{0,c},
α∈{1,...,n}

{
δv − c− (µ(x, y, α)− c)vx − µ̂(y)vy

− 1

2

(
σ2(x, y, α)vxx + 2ρσ(x, y, α)σ̂(y)vxy + σ̂2(y)vyy

)}
= 0, x > 0, (1)

v(0, y) = 0. (2)
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More precisely, with the use of Bellman’s optimality principle it can be shown that
v is a viscosity solution of the above problem.

Denote by v∗ the upper semicontinuous envelope of v. Under the assumption
infα∈{1,...,n} σ

2(0, y, α) > 0 with the use of methods of [2] (Proposition 1.1) we
deduce that v∗(0, y) = 0. Based on this fact and following the argumentation of
[9] (Theorem 6.21), we prove a comparison theorem, which leads to the following
result.

Theorem 1. Assume that infα∈{1,...,n} σ
2(0, y, α) > 0. Then the value function v

is a unique continuous viscosity solution of (1), (2). If, moreover, for any bounded
domain G and any α ∈ {1, . . . , n} there exists a constant θ > 0 such that

σ2(x, y, α)ξ2
1 + 2ρσ(x, y, α)σ̂(y)ξ1ξ2 + σ̂2(y)ξ2

2 ≥ θ(ξ2
1 + ξ2

2), (x, y) ∈ G, ξ ∈ R2,

then v twice continuously differentiable in the open half-space x > 0.

The second assertion of the theorem follows from the classical result of [3], as
long as the uniqueness of a continuous viscosity solution is already proved. Note
that the result of [3] cannot be applied directly, since it concerns a bounded domain.

To solve the problem numerically we use finite difference degenerate elliptic
schemes, presented in [6].
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Pseudo binary differential evolution algorithm
for cardinality constrained portfolio optimization

A. Homchenko and S. P. Sidorov

Saratov State University, Russia

Cardinality constrained portfolio selection is a very important topic for both
practical portfolio management and academic research. The cardinality constraint
put a limit on the number of assets in the portfolio. A huge number of algorithms
and models (see, for example [1], [2], [3]) have been suggested to solve various
representations of this problem.

Let N be the number of assets, K be the limit on the number of assets in the
portfolio and let µi denote the expected return of asset i, i = 1, . . . , N . Let σij be
the covariance between the i and j assets returns, i = 1, . . . , N , j = 1, . . . , N ; ρ be
required level of expected return; li ≥ 0 be the lower share limit price for i asset,
i = 1, . . . , N , and ui ≥ 0 be the top share limit price for i asset, i = 1, . . . , N .

Let 0 ≤ xi ≤ 1 be the proportion of the total value of i-th asset, i = 1, . . . , N ,
that are invested, and δi is a variable, that equals to 1, if i-th asset exists in
portfolio, 0 otherwise, i = 1, . . . , N .

Markowitz model [4] with discrete constraints on the value of the share invested
in the asset and restrictions on the cardinality can be represented as follows:

N∑
i=1

N∑
j=1

σijxixj → min,

subject to

N∑
i=1

µixi = ρ,

N∑
i=1

xi = 1, liδi ≤ xi ≤ uiδi, i = 1, . . . , N,

N∑
i=1

δi = K, δi ∈ {0, 1}, i = 1, . . . , N.

In this research we consider a metaheuristic approach using differential evolution
algorithm [5], [6] for finding the efficient frontier of the Markowitz portfolio opti-
mization problem with cardinality constraint.
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Swing options in the Black & Scholes model:
a free-boundary approach

Tiziano de Angelis Yerkin Kitapbayev

School of Mathematics, Manchester, UK

Swing options are particular financial derivatives that may be described as Amer-
ican options with multiple exercises. They are widely traded in the energy markets
and usually the option’s underlying asset is the price of a given commodity. In
mathematical terms the price of an option of this kind is described by the value
function of an optimal stopping problem with multiple stopping times.

We assume that the dynamics of the price is a geometric Brownian motion and
study the Swing put option on finite time horizon T > 0 with a strike K > 0
and two exercise rights. An important parameter of this problem is the so-called
refraction period δ > 0. It can be interpreted as the minimal period that the
option’s seller needs to deliver a new portion of asset. If the holder exercises its
first right, then the second optimal exercise time is an optimal stopping time for
a standard American put option. Therefore the double optimal stopping problem
reduces to a single optimal stopping problem.

Using the local time-space calculus [5] we derive a closed form expression for the
value function in terms of the optimal stopping boundaries for both exercise rights
and show that the optimal stopping boundaries themselves can be characterised as
the unique solution of nonlinear integral equations. These integral equations are
then evaluated numerically.
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Sums of independent Poissonian subordinators
and Ornstein–Uhlenbeck type processes
in the sense of upstairs representation

Oleg V. Rusakov

Saint Petersburg State University, Russia

Poissonian Stochastic Index process (PSI - process ψ) is defined by a subordi-
nation of the random sequence (ξn), n = 0, 1, . . . , to an independent Poissonian
process Π(s), s ≥ 0, by the following way ψ(s) = ξΠ(s). We mainly focus on the
case when (ξn) consists of i.i.d. random variables. We consider (ψj(s)), j = 1, 2, . . .
the sequence of independent copies of the process ψ.

Basic Theorem. Let (ξn), n = 0, 1, . . ., be i.i.d. rv’s from the domain of at-
traction to a symmetrical α-stable law with the characteristic function Eexp{−itξ0}
= exp{−|t|α}, t ∈ R, α ∈ (0, 2].

Then the following convergence of the finite dimensional distributions takes place
as N →∞, s ≥ 0,

Ψα
N (s) =

1

N1/α

N∑
j=1

ψj(s)⇒ Uα(s), s ≥ 0 . (1)

In the particular case of α = 2 the right part in (1) is the standard Gaussian
Ornstein-Uhlenbeck process with the viscosity coefficient λ > 0 which is explicitly
equal to an intensity coefficient of the leading Poisson process Π. Constructive
description of the limit of (1) for arbitrary α ∈ (0, 2] is based on the follow-
ing embedding one-dimensional time s into the two-dimensional euclidian plane
(R.L.Wolpert, M.S.Taqqu (2005)). Such kind embedding Wolpert and Taqqu call
as ”Upstairs Representation”.

Let consider the Wiener-Chentsov random field on B = [0, 1] × (−∞,+∞) 3
(t, s): it is the symmetrical α-stable, α ∈ (0, 2], white noise dZα(t, s) with the
scattering Lebesgue measure. Assume that Zα(t, s) is normalized by such a way
that for all A ⊂ B : |A| = 1, ∫

A
dZα(t, s)

d
=Lα(1) ,

where Lα(v), v ∈ [0, 1], is the symmetrical α-stable Levi process. For simplicity
here we assume that the Poissonian intensity λ = 1. Since the upstairs represen-
tation is a case of the moving average representation, so we have to introduce the
following 2-dimensional moving kernel, s ≥ 0,

As =
{

(v, r) : r ≤ s; v ≤ e−(s−r); (v, r) ∈ B
}
. (2)
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Proposition. Dynamics of the process Uα is described by the following moving
average representation with a kernel of the ”indicator type”, s ≥ 0,

Uα(s) =

∫
As

dZα(v, u) . (3)

Claims. We consider the following non-homogeneous case, when the leading
Poissonian processes are given by the following distribution with a random intensity
λ > 0, Π(s) = N(λs), where N(s) is a standard Poissonian process of intensity 1.
Let in Basic Theorem the corresponding Poissonian processes for (ψj), j = 1, 2, . . .,
have the distribution type of Π(s) = N(λs), s ≥ 0, (λj) be i.i.d. positive intensities
independent of the corresponding processes (N) and corresponding sequences (ξ).
Let us distribution λ denote by ν. Then for the Gaussian case in (1) the covariance
function for the limit exists and it is equal explicitly to the Laplace transform of the
measure ν. For the non-Gaussian case the limit in (1) has a representation of the
type (2), (3), when the moving kernel is the indicator function under the graphics
of a function g(s − r) (the argument (s − r) corresponds notation(2)), where g is
the Laplace transform of measure ν.

We apply our approach to processing the American Treasures financial data,
kinds of zero-coupon bonds, and to the LIBOR rates.

Examples
0. The classical O-U process is a particular case of the measure ν which is degen-
erated at the point λ > 0.
1. A Simple curious example is as follows. Let the measure ν be the Γ distribution
Γγ , the scale parameter = 1, and the shape parameter γ > 0. Then in Gaussian
case the covariance function of the limit stationary process in (1) has the following
long-memory property: cov(s) = 1/(s+ µ)γ .
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Construction of a copula function
from the joint distribution of Grubbs statistics

Ludmila K. Shiryaeva

Samara State Economic University, Samara, Russia

1. Copula models widely use for modeling dependencies between random vari-
ables. Their applications include such fields as analysis of financial data and actu-
arial calculations. Copula function may be obtained by inversion from known joint
distribution[1]. In this work we find the joint distribution of Grubbs test statistics
and obtain a copula function from this bivariate distribution.

2. Let X1, X2, . . . , Xn−1, Xn be a random sample from a normal N(a, σ2) dis-
tribution. Grubbs proposed the standardized maximum and minimum [2]:

T (1)
n = ( max

1≤i≤n
{Xi} −X)/S; T (1)

n = (X − min
1≤i≤n

{Xi})/S,

where X = 1
n

∑n
i=1Xi and S2 = 1

n−1

∑n
i=1(Xi −X)2.

It is known that P (T
(1)
n < t) = P (Tn,(1) < t). Let F

(1)
n (t) be the distribution

function of T
(1)
n , then [3]:

F (1)
n (t) = P (T (1)

n < t) =


0, t ≤ 1√

n
, n ≥ 2;

n
t∫
1√
n

F
(1)
n−1(gn(x))fTn(x)dx, 1√

n
< t ≤ n−1√

n
, n ≥ 3;

1, t > n−1√
n
, n ≥ 2;

where fTn(x) =
1

n− 1

√
n

π
Γ

(
n− 1

2

)
/Γ

(
n− 2

2

)(
1− n

(n− 1)2
x2

)n−4
2

; (1)

gn(x) =
n

n− 1
x
/√n− 1

n− 2

(
1− n

(n− 1)2
x2

)
. (2)

Let Λn(t1, t2) = P (Tn,(1) < t1, T
(1)
n < t2) be the joint distribution function of

Grubbs test statistics T
(1)
n and Tn,(1). The following theorem describes our main

result.

Theorem. If X1, X2, . . . , Xn is a random sample from N(a, σ2) distribution,

then the joint distribution function of statistics T
(1)
n and Tn,(1) for the case n = 2

is given by

Λ2(t1, t2) =

{
1, (t1, t2) ∈ ∆2, ∆2 = [

√
2

2 < t1 <∞;
√

2
2 < t2 <∞];

0, (t1, t2) /∈ ∆2,
(3)
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Figure 2: The graph of cGr(u, v; 5) Figure 2: The graph of h(x, y)

and for the case n > 2

Λn(t1, t2) =



F
(1)
n (t2), t1 ≥ n−1√

n
;

F
(1)
n (t1), t2 ≥ n−1√

n
;

n
t2∫
1√
n

Λn−1 (ρn(t1,−x), gn(x)) fTn(x)dx, (t1, t2) ∈ ∆n;

0, (t1, t2) /∈ ∆n, t1 <
n−1√
n
, t2 <

n−1√
n
,

(4)

where ρn(u, v) = (u+ v
n−1)

/√
n−1
n−2

(
1− n

(n−1)2
v2
)
, |v| < n−1√

n
;

functions gn(x) and fTn(x) may be calculated with using (2) and (1);
∆n = [1/

√
n < t1 < (n− 1)/

√
n; 1/

√
n < t2 < (n− 1)/

√
n], if n > 2.

3. Grubbs’s copula function may be obtained by inversion from bivariate distri-

bution Λn(t1, t2), i.e. CGr(u, v;n) = Λn(t1, t2), where u = F
(1)
n (t1), v = F

(1)
n (t2).

We carried out the computations of copula density cGr(u, v;n) = ∂2CGr(u,v;n)
∂u∂v in

the case n = 5. The figure 1 contains the result of computations.
As an example of modeling dependencies between random variables X and Y

we discuss the case when X and Y have two-parameter Weibull distribution with
marginals F (x;α1;β1) and F (y;α2;β2).

The function H(x, y) = CGr(F (x;α1;β1), F (y;α2;β2);n) is a legitimate joint
distribution function with marginals F (x;α1;β1) and F (y;α2;β2). We carried out

the computations of density h(x, y) = ∂2H(x,y)
∂x∂y for the case n = 5 with parameters

α1 = α2 = 1 and β1 = β2 = 2. Figure 2 contains the result of calculations.
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On stochastic optimality in the portfolio tracking problem

Ekaterina Palamarchuk

Central Economics and Mathematics Institute, Moscow, Russia

We consider the portfolio selection problem over an infinite time-horizon involv-
ing investor’s time preference. The issue of stochastic optimality is also discussed.

Consider a self-financed portfolio consisting of n assets. The price vector of risky
assets follows a multi–dimensional geometric Brownian motion with parameters

(µ
(i)
t , σ

(i)
t ), i = 1, n− 1 and rt is the return on the risk–free (the n–th) asset. Denote

by Xt the investor’s total wealth at time t, starting with initial wealth x > 0 and
ignoring the transaction costs. We assume (see, e.g., [1]) that Xt , t ≥ 0 is an
R–valued stochastic process defined on a complete probability space {Ω,F ,P} by

dXt = rtXtdt+BtUtdt+ U ′tCtdwt , X0 = x , (1)

where Bt =
(
µ

(i)
t − rt, i = 1, n− 1

)
, Ct =

(
diag(σ

(i)
t ), i = 1, n− 1

)
;

′ represents the vector or matrix transpose; by diag(σ
(i)
t ), i = 1, n− 1 we denote

the (n− 1)× (n− 1)-diagonal matrix with diagonal elements σ
(i)
t , i = 1, n− 1;

{wt}∞t=0 is an n− 1-dimensional standard Wiener process; Ut, t ≥ 0 is an admis-
sible control, i.e. an Ft = σ{ws, s ≤ t}–adapted n− 1-dimensional process such

that there exists a solution to (1). Note that U
(i)
t defines the amount invested

in the i–th risky asset. Let us denote by U the set of admissible controls. We

don’t impose any specific restrictions on Ut such as
∞∫
0

E‖Ut‖2 dt <∞, mean-square

stability of the corresponding process Xt, etc., which are common for portfolio
selection problems over the infinite-time horizon, see e.g. [2].

It is desired to determine the investment strategy Ut for tracking some investor-
defined reference portfolio V 0

t . The reference portfolio is riskless and described by
dV 0

t = ρtV
0
t dt , V

0
0 = x . Notice that it’s natural to assume ρt > rt. The quadratic

objective functional, see [3], measures the total loss from deviations of the actual
portfolio and also the costs of portfolio control:

JT (UT ) =

∫ T

0
ft[(Xt − V 0

t )2 + U ′tUt] dt, (2)

where UT = {Ut}t≤T is a restriction of U ∈ U to the finite horizon [0, T ], ft is a
discount function; it reflects the investor’s time preference and satisfies the following

Assumption D. The discount function ft > 0, t ≥ 0 is non-increasing, its cor-

responding discount rate φt = −ḟt/ft is bounded for t ≥ 0 and
∞∫
0

ft(V
0
t )2 dt <∞.

Consider the problem

lim sup
T→∞

EJT (U)→ inf
U∈U

. (3)
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Assumption P. Let Ãt = rt − (1/2)φt. The triple (Ãt Ct Bt) is stabilizable.
The definitions of stabilizability for linear stochastic systems are given in [4]. As-

suming D and P, it can be shown that there exists a bounded positive semidefinite
solution Πt of generalized Riccati equation

Π̇t + 2ÃtΠt −ΠtBtR̃
−1
t B′tΠt + 1 = 0 , (4)

where R̃t = In−1 + C2
t Πt, In−1 is an (n− 1)× (n− 1) identity matrix.

Next, define

mt =

∫ ∞
t

Φ(s, t)Πsls ds,

where Φ(s, t) = exp

(
s∫
t

(Ãτ −Bτ R̃−1
τ B′τΠτ ) dτ

)
, lt =

√
ft (rt − ρt)V 0

t . We proved

the following
Theorem 1. Assume D and P. Then the solution to problem (5) is given by

U∗t = −R̃−1
t B′t(ΠtX

∗
t −ΠtV

0
t +mt/

√
ft) , (5)

the optimal portfolio process is governed by

dX∗t = (rt −BtR̃−1
t B′tΠt)X

∗
t dt+BtR̃

−1
t B′t l̃t dt+ (l̃t −ΠtX

∗
t )BtR̃

−1
t Ctdwt , (6)

where l̃t = ΠtV
0
t −mt/

√
ft and X∗0 = x.

The issue of stochastic optimality is related to the comparison between JT (U∗)
and JT (U) for U ∈ U in the almost sure (a.s.) sense. The next result is the
following

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then
a) for any U ∈ U there exists a finite (a.s.) random moment T0 such that the

inequality JT (U∗)− JT (U) ≤ hT holds (a.s.) for all T > T0 , where hT > 0 is an
arbitrary non-decreasing function such that hT →∞, T →∞;

b) JT (U∗) converges a.s. to J∞(U∗) as T →∞, where J∞(U∗) is a random
variable.
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